	ADDR[15:0]
	ADDR[15:12]
	ADDR[11:10]
	ADDR[9:2]
	ADDR[1:0]
	Comment

	Offset
	Core
	Page
	Register
	Zero
	

	0x0000
	0x0
	0


	0x00
	0
	Board ID

	0x0004
	
	
	0x01
	0
	FW Version

	0x0008
	
	
	0x02
	0
	FPGA DNA

	...
	
	
	...
	0
	...

	0x1000
	0x1
	0
	0x00
	0
	Core Name

	0x1004
	
	
	0x01
	0
	Core Ver.

	...
	
	
	...
	0
	...

	0x1400
	
	1
	0x00
	0
	Block

	...
	
	
	...
	0
	...

	0x1800
	
	2
	0x00
	0
	Digest

	...
	
	
	...
	0
	...

	0x1C00
	
	3
	0x0
	0
	Debug

	...
	
	
	...
	0
	...

	0x2000
	0x2
	0
	0x00
	0
	Core Name

	0x2004
	
	
	0x01
	0
	Core Ver.

	...
	
	
	...
	0
	...

	0x2400
	
	1
	0x00
	0
	Block

	...
	
	
	...
	0
	...

	0x2800
	
	2
	0x00
	0
	Digest

	...
	
	
	...
	0
	...

	0x2C00
	
	3
	0x0
	0
	Debug

	...
	
	
	...
	0
	...

	0x3000
	0x3
	0
	0x00
	0
	Core Name

	...
	...
	...
	...
	...
	...


Because we have 32-bit interface and transfer four bytes at a time, two lower address bits are always zero. We can use four upper address bits to distinguish between individual cores. Every core will have four pages of registers, so two additional address bits are needed. We have 16-(2+4+2)=8 address bits remaining, so every register page will contain 256 registers. Page 0 may contain core name, version, control and status registers and so on. Page 1 is used to store input data block, page 2 is used to store calculated digest, I believe it should be read-only. Page 3 might contain debugging information, such as internal state registers.
Instead of 0x0 core we can place a page of global registers, such as board ID, firmware version and so on. We can have for example different Xilinx and Altera boards, that will report different values in these registers. Master program in the CPU can use these registers to detect on what board it is running. Another nice thing that has already been proposed on the mailing list is that the master program can quickly read addresses 0x1000, 0x2000 and so on to get core names and find out what cores are actually available and use them as needed. 
