
Keyed Logic BIST for Trojan Detection in SoC
Elena Dubrova
School of ICT

Royal Institute of Technology
164 40 Stockholm, Sweden

dubrova@kth.se

Mats Näslund
Ericsson Research

Ericsson AB
164 80 Stockholm, Sweden
mats.naslund@ericsson.com

Gunnar Carlsson
Development Unit Radio

Ericsson AB
164 80 Stockholm, Sweden

gunnar.carlsson@ericsson.com

Ben Smeets
Ericsson Research

Ericsson AB
164 80 Stockholm, Sweden
ben.smeets@ericsson.com

Abstract—As demonstrated by the recent attack on Intel’s Ivy
Bridge processor, the traditional Logic Built-In Self-Test (LBIST)
methods do not provide adequate protection of SoC against
malicious modifications known as hardware Trojans. In this
paper, we introduce a simple but efficient countermeasure against
hardware Trojans which exploits non-zero aliasing probability of
LBIST. We propose to generate LBIST test patterns based on
a configurable key which is decided and programed into the
circuit after the manufacturing stage. Since the key and hence
expected LBIST signature are unknown at the manufacturing
stage, an attack based on selecting suitable values for the Trojan
which result in the same signature as a fault-free circuit signature
becomes infeasible.

I. INTRODUCTION

Cryptographic methods are used to protect sensitive infor-
mation against unauthorized modification or accidental dis-
closure. Cryptographic algorithms providing high assurance
exist, e.g. Advanced Encryption Standard (AES) [1]. However,
many open problems related to assuring security of a hardware
implementation of a cryptographic algorithm remain. Security
of a hardware implementation can be compromised by a
random hardware fault. For example, if the output of a pseudo-
random pattern generator contained in a stream cipher gets
stuck to 0, then the stream cipher will be sending messages
unencrypted.

To make possible a periodic fault detection in functional
circuits during their lifetime, cryptographic systems often
employ Logic Built-In Self-Test (LBIST). The traditional
testing methods are good at detecting random faults. However,
as demonstrated by a recent attack on Intel’s Ivy Bridge
processor [2], they do not provide adequate protection against
malicious circuit modifications known as hardware Trojans.
The points of modifications can be selected so that the LBIST
signature computed for the Trojan-injected circuit is the same
as the fault-free circuit signature and thus the Trojan does not
trigger LBIST to fail.

Hardware Trojans has been known for a while (also referred
to as sleeper cells), but previously it was very difficult to
inject a Trojan into the supply chain. In today’s globalized
world where the use of third-party IP from small and relatively
new vendors is widespread, this is no longer a problem. It is
also easier now to activate a Trojan as wireless connectivity
becomes a dominant way of communication. Earlier genera-
tions of hardware Trojans had to be activated through a wired

network or software [3]. In addition, there is an increasing
number of components on a chip which are always on and
waiting for a command to wake up other parts of a chip [4].

Apart from Trojans injected into the third-party IP, mali-
cious circuitry can be added during tapeout of a SoC. Today’s
SoCs contain billions of transistors, so it is very difficult to
identify which of them are not a part of the original design.
Functional verification is further complicated by the fact that
manufacturers are typically given a freedom to add some
redundant circuitry to a chip in order to increase the yield [5].

The threat posed by hardware Trojans was recognized
by multiple government agencies, e.g. the U.S. Department
of Defense. Over the last few years, documents has been
published to regulate suppliers of critical components [6]. The
discovery of counterfeit chips in safety and security critical
industrial and military products [7] exemplified the importance
of building protection mechanisms against hardware Trojans.

In this paper, we introduce a simple but efficient coun-
termeasure against hardware Trojans which exploits non-zero
aliasing probability of LBIST. We propose to generate LBIST
test patterns based on a configurable key which is decided and
programed into the circuit after the manufacturing stage. Since
the key and hence expected LBIST signature are unknown at
the manufacturing stage, an attack based on selecting suitable
values for the Trojan which result in the same signature as
a fault-free circuit signature becomes possible only if the
attacker can guess the key. By making the key large, e.g. 128
bits, such a possibility can be ruled out.

II. TRADITIONAL LBIST

Built-In-Self-Test (BIST) was introduced in 80s with the
purpose to combat the raising complexity of external test-
ing [8]. In BIST test generation and response capture logic
are incorporated on-chip. On-chip circuitry usually works
at a much higher frequency than an external tester. So, by
embedding the test pattern generator on chip, test application
time can be reduced. By embedding the output response
analyzer on chip, time to compute the circuit response can
be reduced as well.

There are different types of BIST. Logic BIST (LBIST), on
which we focus in this paper, is used for testing random digital
logic [9]. Memory BIST (MBIST) is designed for testing
memories [10].

978-1-4799-6890-9/14/$31.00 c© 2014 IEEE

The traditional LBIST employs a Pseudo-Random Pattern
Generator (PRPG) to generate pseudo-random test patterns
that are applied to the Circuit Under Test (CUT) and an output
response compactor for obtaining the cumulative value of the
output responses of the circuit to these test patterns, called
signature (see Figure 1). Faults are detected by comparing the
computed signature to the expected ”good” signature.

Theoretically, it is possible to generate a complete set of test
patterns off-line using some Automatic Test Pattern Generation
(ATPG) method and store this test set in an on-chip Read
Only Memory (ROM). However, such a scheme does not
reduce the cost of test pattern generation and requires a very
large ROM. Several gigabits of test data may be required
for a multi-million gate design [11]. Instead, pseudo-random
patterns generated by a Linear Feedback Shift Register (LFSR)
are usually used as test patterns [12]. LFSRs are simple, fast,
and easy to implement in hardware [13].

The output response compactor is usually implemented by
a Multiple Input Signature Register (MISR). Since the output
response is compacted, a faulty circuit may produce the same
signature as the correct circuit. This is known as an aliasing
error. If an MISR with a primitive generator polynomial is
used1, then the aliasing probability is bounded by 1/2n [14],
where n is the length of the MISR.

LBIST controller contains control circuitry that adminis-
trates the LBIST testing process: generation of pseudo-random
test patterns, their application to the circuit under test and
compaction of responses of the circuit to these test patterns. In
operation, the controller initializes the PRPG with the initial
state defined by the test initialization parameters. After the
initialization, controller counts the number of test patterns
generated by the PRPG and stops the PRPG when a pre-
defined number of patterns are generated.

Pseudo-random patterns generated by the PRPG are fed into
the circuit under test and propagated through its components.
The resulting responses are provided to the MISR. The MISR
computes the signature and forwards it to the decision logic.

Decision logic compares the signature computed by the
MISR to the known ”good” signature to make a decision
whether the CUT passed or failed a test cycle of the LBIST. If
the MISR signature matches the expected signature, the CUT
passes the test; otherwise it fails the test.

The test initialization parameters and the expected signature
are stored in a memory or hard-wired during the manufacturing
stage. Typically, LBIST is performed automatically at power-
up and restart, or in response to an external trigger, e.g., if
a hardware or software supervising the chip indicates a fault.
In addition, LBIST may be initiated by an operator, e.g., for
debugging purposes when a faulty chip is sent for repair.

III. HARDWARE TROJANS

A hardware Trojan is a malicious alteration of a design
that makes possible to bypass or disable the security of a

1An irreducible polynomial of degree n is called primitive if the smallest
m for which it divides xm +1 is equal to 2n−1[13].

PROGRAMMED
BY THE

MANUFACTURER

CONTROLLER

SC
A

N
 C

H
A

IN
 1

SC
A

N
 C

H
A

IN
 N

MISR

LBIST MODULE

FUNCTIONAL
CIRCUITS

EXPECTED
SIGNATURE

DECISION LOGIC

PRPG

TEST MODE
SELECT

PASSED/
NOT PASSED

TEST INITIALIZATION
PARAMETERS

Fig. 1: Traditional LBIST.

system. The purpose of Trojan insertion can be either to leak
confidential information to the adversary, or to disable/destroy
a chip.

There are two different kinds of Trojans [3]. Functional
Trojans add or remove transistors, gates or other components
to/from the original design. Parametric Trojans reduce the
reliability of a chip by thinning of wires, weakening of
transistors, or subjecting the chip to radiation. A chip with
a parametric Trojan produces errors or fails every time the
affected component is loaded intensely. While parametric
Trojans are always on, functional Trojan are normally in a
dormant state. They are triggered either internally by some
condition (an internal logic state, a particular input pattern, a
counter value) or externally.

Current techniques for Trojan detection include:

1) Physical inspection in which the layers of a chip are
repeatedly grinded and the exposed circuitry is scanned
by various visual inspection methods [15];

2) Testing (functional or built-in self), in which test stimuli
are applied to a chip and its output is monitored to detect
a functional disagreement from the specification [16];

3) Side-channel analysis in which signals emitted by a chip,
e.g. its leakage current, path delays, or electromagnetic
radiation are measured [17], [18].

Some countermeasures have also been developed to protect
against activation of certain Trojans, or to maintain secure
operation in presence of unknown Trojans [19]. The former
typically involves utilizing data guards such as scrambling
or obscurification, or hardening the architecture against spe-
cific triggers. The latter is usually achieved by replication,
fragmentation and voting, as in the traditional fault-tolerant
design [20].

IV. TROJANS EXPLOITING NON-ZERO ALIASING
PROBABILITY OF LBIST AND THE PRESENTED

COUNTERMEASURE

Overall, existing methods for detecting hardware Trojans
are still in their infancy. These methods typically focus on
a specific class of Trojans, with no single technique being
able to provide a complete coverage. For example, the recent
attack on the Random Number Generator (RNG) of Intel’s Ivy
Bridge processor [2] demonstrated that the traditional LBIST
may fail even the simple case of functional stuck-at fault type
of Trojans. Such type of Trojans can be injected by changing
the dopant masks to shorten the outputs of selected gates to
GND or to VDD.

Intel’s Ivy Bridge processor RNG consists of an entropy
source and a digital post-processing unit. The digital post-
processing unit contains an Online Health Test (OHT) module
and a cryptographically secure Digital Random Bit Generator
(DRBG) [21]. The OHT monitors the random numbers for the
entropy source to guarantee that they have a required minimum
entropy. DRBG includes a conditioner and a rate matcher.
The conditioner computes new seeds for the rate matcher. On
the based of these seeds, the rate matcher computes 128-bit
random numbers.

The RNG is protected by LBIST which checks the func-
tionality of the RNG at each power-up. When LBIST is
initiated, the entropy source is disconnected and replaced by
a 32-bit LFSR which generates pseudo-random test patterns
which are applied to the DRBG. The 32-bit MISR signa-
ture representing the compacted output responses of the rate
matcher is computed. This signature is compared to a hard-
wired expected signature to detect faults in the conditioner
and the rate matcher. If two signatures are the same, the RNG
passes the LBIST.

Note that, in the traditional LBIST, at each test cycle, the
LFSR starts from the same initial state and generates the
same number of test patterns which are defined by the test
initialization parameters stored on-chip/board. Accordingly,
the same set of test patterns is applied to a CUT and the same
signature is expected. Therefore, an adversary who knows the
set of test patterns generated by the LFSR can made suitable
circuit modifications which result in the same signature as a
fault-free circuit signature. Fore a 32-bit MISR, the probability
that two outputs have the same 32-bit signature is 1/232.
Therefore, in order to to inject a Trojan in the RNG which
does not trigger LBIST, the adversary has to do 231 simulation
trials of average.

To demonstrate how such an attack can be done, consider
a toy example of a RNG generating numbers in the range
{1,2, . . . ,15}. The RNG can be implemented by a 4-bit
Non-Linear Feedback Shift Register (NLFSR) [22] which is
updated using the following feedback functions:

f0(x1) = x1
f1(x0,x1,x2) = x2⊕ x0x1
f2(x0,x1,x3) = x3⊕ x0⊕ x1
f3(x0) = x0

Test Fault-free case With Trojan injected
pattern NLFSR MISR NLFSR MISR

from LFSR response signature response signature
(x3x2x1x0) (x3x2x1x0) (x3x2x1x0) (x3x2x1x0) (x3x2x1x0)

0001 1100 1100 0100 0100
1001 1000 1110 0000 0010
1101 1010 1101 0010 0011
1111 1101 0111 0101 1000
1110 0001 1110 0001 0101
0111 1001 1110 0001 1111
1010 0001 0110 0001 1010
0101 1110 1101 0110 0011
1011 1101 0111 0101 1000
1100 0110 1001 0110 0010
0110 0101 1101 0101 0100
0011 1001 0011 0001 0011

TABLE I: Example.

where xi represents for the state variable of the ith stage of
the NLFSR and fi is the feedback function of the ith stage,
for i ∈ {0,1,2,3}.

Suppose that the NLFSR is protected by LBIST in which
the PRNG is implemented by a 4-bit LFSR with the gen-
erator polynomial 1⊕ x3 ⊕ x4 and the output compactor is
implemented by a 4-bit MISR with the generator polynomial
1⊕ x⊕ x4.

An attacker has a chance of 1/2n to correctly guess the
number generated by an n-bit NLFSR (1/24 in our toy
example). However, it is possible to inject a Trojan which
reduces the complexity of the attack. This can be done by
modifying the internal flip-flops of the NLFSR so that they
are set to a constant value. If k flip-flops are modified, the
complexity of the attack is reduced to 1/2n−k.

Suppose that the attacker knows that the LFSR generating
tests patterns starts from the state (0001) and that 12 tests
patterns are generated. The attacker can calculate the expected
”good” MISR signature by simulation. From the 3rd column of
Table I we can see that in our example the expected signature
is (0011). Then, the attacker can compute which signatures
are obtained when some of the NLFSR’s flip-flops is set to
a constant-0 or a constant-1. In our example, the signature
(0011) is obtained if the flip-flop corresponding to the stage
3 of the NLFSR is set to 0 (see last column of Table I). So,
the attacker can inject the Trojan into the NLFSR and reduce
the complexity of the attack by one half. Note that, in general,
detecting such a Trojan in a large design using optical reverse
engineering is extremely difficult since only the dopant masks
of a few transistors have been modified [2]. Since optical
reverse engineering is not feasible and the Trojan passes
LBIST, a verifier of the design will not be able to distinguish a
Trojan-injected circuit from a Trojan-free one. Consequently,
the verifier will not be able to provide a ”golden” chip (chip
which is known to have no malicious modifications). Without a
reliably verified golden chip, most post-manufacturing Trojan
detection mechanisms [3] cannot be used.

We propose to mitigate this problem by making the initial
state of the PRPG dependant on a configurable key (see
Figure 2). The key determines the set of test patterns generated

by the PRPG and hence the expected MISR signature. The
key is decided and programmed into the circuit by the circuit’s
user after the manufacturing stage. The user also computes the
expected signature and programs it into the circuit. Since the
expected signature is unknown at the manufacturing stage, an
attack based on selecting suitable values for the Trojan which
result in the same signature as a fault-free circuit signature
becomes possible only if the attacker can guess the key. For
a key of size 128-bit, the attacker will need 1/2127 tries
on average to guess the key. Therefore, the attack become
infeasible.

The PRPG is adapted to generate test patterns based on an
initialization value which is derived from the key. If the key
has the same size as the initial state of PRPG, the key itself
may be used as an initialization value. Alternatively, if the
key is longer than the size of the initial state, the key may
be reduced to an initialization value of the same size as the
initial state of PRPG by some suitable function (as in the case
of keyed PRPG used in cryptographic methods [23]).

The key and the expected signature can be stored in a non-
volatile memory, such as a Flash or an Electrically Erasable
Programmable Read-Only Memory (EEPROM), or by means
of programmable efuses.

Note that the key does not have to be secret. If the currently
stored key and the expected signature become compromised,
e.g., an adversary gains knowledge of them when the circuit is
sent for repair or maintenance, a new key and a new expected
signature can be programmed by the user upon receiving the
circuit back.

V. CONCLUSION

We introduced a countermeasure against hardware Trojans
which exploits non-zero aliasing probability of LBIST.

Note that no single method can protect against all possible
types of adversarial attacks. Similarly, the proposed method
may fail to detect some types of Trojans, e.g. parametric
Trojans. Finding adequate protective mechanisms against para-
metric Trojans remains a topic of future work.

ACKNOWLEDGEMENT

The first author was supported in part by the research grant
No SM12-0005 from the Swedish Foundation for Strategic
Research.

REFERENCES

[1] J. Daemen and V. Rijmen, “AES proposal: Rijndael,” April 2003,
national Institute of Standards and Technology.

[2] G. Becker, F. Regazzoni, C. Paar, and W. P. Burleson, “Stealthy dopant-
level hardware Trojans,” Proceedings of Cryptographic Hardware and
Embedded Systems (CHES’2013), LNCS 8086, pp. 197–214, 2013.

[3] M. Tehranipoor and F. Koushanfar, “A survey of hardware Trojan
taxonomy and detection,” IEEE Design Test of Computers, vol. 27, no. 1,
pp. 10–25, 2010.

[4] E. Sperling, “The next big threat: Manufacturing,” 2014,
http://semiengineering.com/manufacturing-and-integration-risks/.

[5] P. Gupta and E. Papadopoulou, “Yield analysis and optimization,” in The
Handbook of Algorithms for VLSI Physical Design Automation. RC
Press, 2011.

[6] Department of Defense, “Federal register,” Nov. 2013, http://www.
steptoe.com/assets/htmldocuments/DFARS

CONTROLLER

SC
A

N
 C

H
A

IN
 1

SC
A

N
 C

H
A

IN
 N

MISR

LBIST MODULE

FUNCTIONAL
CIRCUITS

EXPECTED
SIGNATURE

DECISION LOGIC

PRPG

TEST MODE
SELECT

PASSED/
NOT PASSED

KEY

PROGRAMMED
BY THE USER

TEST INITIALIZATION
PARAMETERS

Fig. 2: The presented keyed LBIST.

[7] C. Gorman, “Counterfeit chips on the rise,” IEEE Spectrum, vol. 49,
no. 6, pp. 16–17, 2012.

[8] E. McCluskey, “Built-in self-test techniques,” IEEE Design and Test of
Computers, vol. 2, pp. 21–28, 1985.

[9] J. Rajski and J. Tyszer, Arithmetic Built-In Self-Test for Embedded
Systems. Prentice Hall PTR, 1998.

[10] A. K. Sharma, Semiconductor Memories: Technology, Testing, and
Reliability. Wiley-IEEE Press, 2002.

[11] G. Hetherington, T. Fryars, N. Tamarapalli, M. Kassab, A. Hassan, and
J. Rajski, “Logic BIST for large industrial designs: real issues and case
studies,” in Proceedings of International Test Conference (ITC’1999),
1999, pp. 358 – 367.

[12] E. McCluskey, S. Makar, S. Mourad, and K. Wagner, “Probability mod-
els for pseudorandom test sequences,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 7, no. 1, pp. 68–74,
1988.

[13] S. Golomb, Shift Register Sequences. Aegean Park Press, 1982.
[14] M. Damiani, P. Olivo, M. Favalli, S. Ercolani, and B. Ricco, “Aliasing

in signature analysis testing with multiple input shift registers,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 9, no. 12, pp. 1344–1353, 1990.

[15] S. Skorobogatov, “Physical attacks and tamper resistance,” in Intro-
duction to Hardware Security and Trust, ser. Information Security and
Cryptography, M. Tehranipoor and C. Wang, Eds. Springer Berlin /
Heidelberg, 2011.

[16] E. Dubrova, M. Näslund, and G. Selander, “Secure and efficient LBIST
for feedback shift register-based cryptographic systems,” in Proceedings
of International Test Conference (ITC’2014), May 2014, pp. 1–6.

[17] P. C. Kocher, “Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems,” in Proceedings of the 16th Annual
International Cryptology Conference on Advances in Cryptology, ser.
CRYPTO ’96. London, UK, UK: Springer-Verlag, 1996, pp. 104–113.

[18] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis.” Springer-
Verlag, 1999, pp. 388–397.

[19] M. Beaumont, B. Hopkins, and T. Newby, “Hardware Trojans - preven-
tion, detection, countermeasures,” Australilan Department of Commerce,
Tech. Rep. DSTO-TN-1012, July 2011.

[20] E. Dubrova, Fault-Tolerant Design. Springer, 2013.
[21] Intel, “Intel digital random number generator (drng) software implemen-

tation guide,” Aug. 2012, https://software.intel.com/en-us/articles/intel-
digital-random-number-generator-drng-software-implementation-guide.

[22] E. Dubrova, “A scalable method for constructing galois NLFSRs with
period 2n−1 using cross-join pairs,” IEEE Transactions on Information
Theory, vol. 59, no. 1, pp. 703–709, 2013.

[23] D. Stinson, Cryptography Theory and Practice. Chapman & Hall/CRC,
3rd edition, 2006.

