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Chapter 1

Introduction

1.1 The Security Impact of “Bad Random Num-
bers”

For decades the relevance of cryptography grade random numbers was largely un-
derestimated by the cryptographic community. Popular textbooks either entirely
skipped the topic or blissfully abstracted the inherent complexity of the topic away.

In 2013, when secret documents leaked by Edward Snowden claimed that the
NSA had managed to publish a backdoored cryptographically secure[!] pseudo-
random number generator (CPRNG or CSPRNG) through the NIST, this finally
changed.

Why would the NSA go through such effort to make a backdoored CPRNG a
widely implemented and used standard? The claims suggest that they considered
it a rather effective way to gain access to people’s encrypted communication.

The key reason is that cryptographically secure random numbers are used as
key material (called “critical security parameters”, or “CSPs” in FIPS140 lingo)
for “proper” cryptographic algorithms, i.e. encryption and authentication. With
the vast majority of cryptographers at least outside the “intelligence” and military
communities focusing on the trustworthiness of the cryptographic algorithms, fo-
cusing on the random number sources they use is exceedingly promising for a whole
range of reasons.

With the lack of attention by the cryptographic community, chances of discovery
were tremendously lower than for a direct attack against the cryptographic algo-
rithms proper. The expected lifetime of CPRNGs was also much longer than that
of an encryption or secure hash algorithm.

Additionally, while most computers offer a range of different cryptographic algo-
rithms to choose from, they usually only offer a single source for cryptographically
sound random numbers.

These two aspects combine disastrously: Many Unixoid operating systems as of
today (mid 2014) still use the outdated Yarrow algorithm despite the fact that the
significantly improved successor algorithm called Fortuna has been published more
than ten years ago.

Yet another problem is that with encryption and authentication algorithms, all
parties involved know what algorithm is used and can refuse to do so. With random
number sources, it is impossible for the recipient of some key material to determine
if the sending side used a secure source.

Finally, computers and non-determinism don’t mix too well. Software as such
is inherently deterministic, and hardware must be made deterministic as well to be
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of any use in computing. As a consequence however, “randomness” in computers
is a scarce resource, leading to several more or less questionable approaches to
compensate for this.

CPRNGs use whatever minimal amount of “randomness” they can get hold of
as “seed” to their deterministic algorithms and then use some sort of cryptographic
algorithm to generate vast amounts of “effectively random” output at high speed.
Aside from hiding a possibly subverted source of bad “seed” itself, CPRNGs also
introduce the additional risks of broken cryptographic algorithms and insecure im-
plementations of otherwise sound cryptographic algorithms.

To get whatever minimal amount of “randomness” to “seed” their CPRNGs,
real world systems frequently resort to even more questionable approaches. They
poll “frequently changing” system attributes, measure timings on external events
and similar. How reliable these approaches are however depends on the environment
they are run in. There have been several reports about CPE (customer premises
equipment) home routers in a “quiet” environment, for example with a single com-
puter waiting for “the Internet” to become available, using their CPRNG during
startup with such insufficient “seed” that their output is highly predictable.

In summary, dependable sources for random numbers are essential for any com-
puting device used for security-critical purposes—no matter how long this aspect
has been neglected by most of the security community.

1.2 Essential Terminology

To understand the peculiarities of HWRNGs and the context they are generally
used in, a some fundamental terminology is necessary.

Entropy source An entropy source generates output that isn’t entirely predictable
from some non-deterministic phenomenon. The output may be analog or
digital, and it may be biased and segments of its output may be statistically
correlated to other segments of output.

Hardware random number generator (HWRNG) A HWRNG is somewhat
similar to an entropy source in that it generates non-deterministic output.
However, different than an entropy source its output is digital and the bits
in its output are unbiased and not correlated to each other. HWRNGs are
usually built by combining an entropy source and an extractor that “distills”
the output from the entropy source by removing bias and correlation. As
such, HWRNGs are a special subtype of entropy source.

Cryptographically secure pseudo random number generator (CPRNG)
CPRNGs are somewhat similar to HWRNGs, but they work by taking some
very limited amount of input from an entropy source and feed that as seed into
a pseudo random number generator that is using cryptographic algorithms to
produce vast amounts of output that appears to be random.

Hardware security module (HSM) To protect cryptographic systems from out-
side manipulation, HSMs are used. They are meant prevent physical manipu-
lation, usually by some sort of self-destruct feature, as well as remote manipu-
lation by restricting the access interface to critical components. HSMs usually
contain implementations of various cryptographic algorithms, key stores for
the various cryptographic algorithms, and CPRNGs using the cryptographic
algorithms. They may also contain entropy sources.

This very last feature of HSMs, to use built-in entropy sources, will turn out to be
the fundamental problem that this project tries to address.
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1.3 “IT Security” and “Tamper Protection”

A huge problem that has a particular effect on HWRNGs is the industry wide
confusion between “IT security” and “IT insecurities handling”.

The general attitude that a device, component or other product is “secure”
unless proven otherwise leads to HWRNGs being produced and sold which can’t
be audited. But an audit is the only way to ensure that a HWRNG doesn’t have
a backdoor: Testing its algorithmic function by feeding it some defined input and
checking for the expected output result isn’t possible, simply because there is no
input and any output is, or should be, equally probable.

This immediately collides with the widely promoted, and in some cases even
legally required, “tamper protection” of security related devices. The problem with
“tamper evident” or “tamper resistant” (or “tamper proof”, if you talk to the
wrong marketing people) devices is that by their very design these devices can’t be
properly audited without breaking them.

At best it may in some cases be possible, using some industrial or scientific grade
equipment, highly specialized knowledge and skills, and a tremendous amount of
man power and funding, to investigate the correctness of a single device sample—
and destroying it in the process. Auditing a device before actually putting it to use
is generally impossible.

A hardware security module (HSM) used to store key information or holds what-
ever other kind of confidential state information has reason to be tamper protected.
But this protection comes at a hefty price as it makes the legitimate user of such
a device more vulnerable to any manipulation during the design, production and
delivery of such a device.

HWRNGs however don’t hold any state information, and as such tamper protec-
tion beyond the “tamper evident” level is nothing but counterproductive. Combined
with the inapplicability of standard test procedures this makes the built-in HWRNG
in an HSM a prime target for any product-level pre-deployment attack.

In summary, while HWRNGs should be used in connection with mostly any
HSM, they need to be treated specially due to these unique—and essential—proper-
ties.
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Chapter 2

Security Basics for
Cryptographic Hardware

At this point it should already be evident that the security model underlying the de-
sign of many cryptographic hardware solutions is lopsided if not thoroughly flawed,
especially when it comes to dealing with the HWRNG or entropy source they use.
So this chapter starts with a classification scheme for attacks followed by some
fundamental defense strategies.

2.1 Classification of Attacks

There is no simple, one-dimensional scale by which to characterize different kinds of
attacks. Instead, several categories create a multi-dimensional space within which
attacks can be classified. With a context-specific weighing of these categories can
attacks then be rated on a one-dimensional scale again; however, there is no generic
such weighing, and as such, there is no universally applicable way to assess the
relevance of a given attack without the context of a specific attacker and target.

2.1.1 Rationality of Attack

What is the motivation for an attack? Or, as a former criminal investigator I’ve
met once put it: “If I had to choose to deal with either a bank robber with an
assault rifle, or a lunatic with a slingshot, I’d always pick the bank robber.”

Defending against irrational attackers is notoriously difficult. Jealousy, religious
or political zeal, the sheer desire to destroy something or some kinds of mental
derangement aren’t a rational reason to attack some computer system, but that
doesn’t mean these attacks don’t occur. And it most definitely doesn’t mean they
are any less serious.

In the context of this study, irrationally motivated attacks are largely out of
scope—not because they are considered irrelevant, but because they have to be
dealt with at a completely different level.

2.1.2 Levels of Access and Goals of Attacks

Not a single category, but more a subspace of the entire space created by the
categories listed here, are the various levels of access attackers may gain and, closely
related, the goals they may want to achieve.

Comparing levels of access is frequently difficult and largely context-dependent.
Gaining root access on a Unixish system is largely considered more severe than
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gaining non-root access only; if the target however is a database server, then gaining
“only” database administrator privilege is effectively all that an attacker may need.

Similarly, gaining passive or read-only access to communications or data may be
considered a lesser level of access than gaining the capability to inject new or modify
existing communication or data; depending on the ultimate goal of the attack these
distinctions may make a huge difference or be effectively irrelevant.

As far as this study is concerned, it is generally best not to make any assumptions
about these categories.

2.1.3 Personal Risk for the Attacker

An important category to take into consideration is the personal risk for the at-
tacker. Put bluntly, breaking into a computer, or range of computers, in a country
that doesn’t have an extradition treaty with the country of residence of the attacker
is significantly less risky than physically breaking into a local police station.

So international attacks, especially between countries that have less than a cor-
dial relationship, bear significantly less risk on the attacker than attacks within the
same jurisdiction. On the other hand, from the target’s point of view, the risk of
international attacks is significantly higher than of local attacks.

In a similar vein, the particular legislature has a huge influence on this category.
If using somebody else’s mail address as the alleged source of spam mail was treated
as seriously as forging somebody else’s signature, this would surely make a noticeable
difference to the average spammer.

Reasonably rational attackers will generally try to minimize their personal risk.
As a potential target this can be leveraged to some degree, by trying to increase
the risk for an attacker: If suitable security measures imply that an attack requires
physical access to the premises of the target, then this increases not only the risk
of discovery and capture of the attacker but also adds burglary to the charges.

While these examples may appear somewhat far-fetched at this point, the point
is vital to the security of cryptographic systems: If an attacker needs to gain physical
access to an HSM or HWRNG or similar to subvert it, rather than doing so remotely,
this makes a huge difference. A simple pushbutton that needs to be pressed to
update the firmware of such a device is well worth the extra complexity.

2.1.4 Risk of Discovery

A similar but different category is the risk that a target may discover the attack.
Many attack types depend on going unnoticed; once the target discovers or even
only suspects an attack, the attack has implicitly failed.

When targets discover that their confidential communication is being tapped,
they will resort to a different communications channel and the attacker will be
unable to snoop on them any further.

On the other hand, if the goal of an attack is to disrupt the communication
between targets, then the risk of discovery is effectively 1, or 100%, but that doesn’t
mean it’ll stop an attacker with that goal.

For the purposes of this study, increasing the risk of discovery for the attacker
is always desirable. At worst, it doesn’t make any difference, but so far there is no
scenario known where it actually is counter-productive.

2.1.5 Scale/Scope of Attack

Possibly the most important category of attack, at least if the claims of Edward
Snowden are even vaguely correct, the scale or scope of an attack.
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If a reasonably rational attacker has a choice between attacking a single com-
puter or an entire product line while all the other categories are otherwise unaffected,
then it is more than likely that such an attacker will opt for subverting the entire
product line.

This fact is frequently glossed over by commercial security hardware vendors
who put a huge emphasis on targeted attacks against individual or small groups of
devices while neglecting the risk of all-comprehensive carpet-bombing-style attacks
against their products.

2.2 Types of Attacks on Cryptographic Hardware

With regard to cryptographic hardware, a number of different attack types are
considered potentially relevant. This list by its very nature not complete, nor do
all of these types apply to all scenarios. In fact, when designing cryptographic
hardware, a number of fundamental design decisions have to be made which have
a tremendous effect on the applicability of the design in a given scenario.

2.2.1 Extraction of Confidential Data

There are basically two reasons why to use an HSM: One is to increase throughput
beyond the point that can be done in software on general-purpose hardware, and the
other is to provide additional protection to the key material and state information
used—the confidential data, or “critical security parameters”, or “CSPs” in FIPS140
terminology.

The underlying assumption with the latter is that attackers may try to gain
access to the HSM in such a way that they can covertly extract the key material or
state information without leaving any permanent traces, thus allowing them to pose
as the owner of the HSM using the key material, or by decrypting communications
using the acquired state information.

At worst, these attacks can be done remotely, using some kind of remote read
access to the confidential data. Designs that force an attacker to access the device
physically are considered significantly more secure because they increase the risk
and cost for the attacker while reducing the possible scope of an attack. Devices
considered most secure however don’t allow any extraction of confidential data at
all; they may allow the installation of data through a write-only interface and then
use it for their cryptographic purposes, but they don’t allow any extraction of that
data at all.

As obivous as this kind of ranking is, it misses two essential aspects that by
themselves lead to an opposite ranking.

The first one applies to HSMs as such: If the device itself is suspect, then the
more restricted access is, the harder it is generally to detect any manipulation.
While in the context of this particular attack type this limitation may be uncritical,
it will recur in more critical ways through large parts of the rest of this section.

This threat is entirely irrelevant with HWRNGs, simply because they don’t
hold any confidential data. For that reason, protection through tamper resistance
doesn’t offer any protection to a HWRNG; it just makes it harder to inspect. On the
other hand, since HWRNGs are inherently non-deterministic by their very nature,
inspection of the device is the only way to ensure its integrity. Put bluntly, a
HWRNG that is made impossible to inspect due to tamper protection can only be
either blindly trusted or not at all.
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2.2.2 Injection of Fake Confidential Data

Another threat closely related to the previous one is the possibility that an attacker
injects manipulated confidential data into a device.

Again, there is a major difference between attacks that can be exploited re-
motely, and those that require physical access to the device. Again, this issue
must be considered from an operational point of view: If devices can’t be man-
aged remotely, then the effort necessary to establish physical access for authorized
operations may well negate the security benefits of a local-only access design.

The reasons why it should be possible at all to inject fake confidential data are
twofold: For operational purposes it may be desirable to have a way to replace a
broken device and installing the confidential data from (a backup of) the broken
device. From a testing point of view, if fake confidential data can’t be injected,
then functional tests of the device are effectively impossible.

Again, this threat is effectively irrelevant to a HWRNG for the same reasons as
in the previous section.

2.2.3 Installation of Backdoors in Operational Devices

All IT components should generally be considered buggy. If there is no way to install
updates, the real-world consequence is that even devices known to be insecure are
kept in use. However, if a device caters for the installation of updates, this feature
can be abused by an attacker to install a backdoor.

With regard to HSMs one might reason that this scenario is rather impractical,
simply because an attack towards the computer that is using the HSM is far simpler.
However, once such an attack has been successful, it is particularly unlikely to get
noticed even if the computer installations used are subject to periodic audits.

Implementing features in hardware rather than software may make it more dif-
ficult to execute the actual replacement, but similarly, once the modified hardware
is in place it is exceedingly difficult to discover

2.2.4 Replacement of Operational Devices

If installing a backdoor in an already operational device is time consuming, difficult,
and generally involves a high risk for the attacker, an obvious alternative is to replace
the device with a manipulated one instead.

When it comes to HSMs, this is somewhat difficult due to the confidential data
stored in the device. An attacker has effectively two options: Try to transfer the
data somehow—which can be made difficult by design—or rely on the owners/users
of the device that they assume some sort of glitch, re-install the confidential data
themselves, and resume operation with the replaced device.

With HWRNGs however, even this is not a problem for the attacker: Since the
device doesn’t generally hold any confidential data, all that may be noticed by the
owners/users is a very short loss of service.

In other words, if an attacker intends to replace a crypto hardware device, a
HWRNG-only device is a particularly promising target.

2.2.5 Targeted Distribution of Corrupted Devices

All attack models so far assume that a device is attacked after its deployment.
However, replacing or modifying devices before they are actually delivered to the
target opens a whole new range of possibilities—to the attacker.
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The advantages for an attacker are plentiful: These attacks are inherently remote
while still giving them full physical access to the device, minimizing effort and
personal risk while at the same time providing them with a longer timeframe for
their operation.

The major downside for an attacker is that a newly delivered device may be
subject to some additional scrutiny by the receiver, but the way many commercial
HSMs these days focus on the previous types of attacks it is usually feasible for an
attacker to pass this additional hurdle.

2.2.6 Corruption of Entire Products or Product Families

All attack models so far assume a targeted attack at individual devices. However,
attackers who have successfully managed to subvert a device design to a point that
their devices pass the initial scrutiny on delivery, might as well see that they replace
all devices of that type, rather than individual ones.

The key risk with this attack is that the risk of discovery increases linearly
with the number of devices subverted. However, since the attack usually happens
during manufacture, rather than during shipping as might when attacking individual
devices, this risk is frequently so small that it may be acceptable to an attacker.
Furthermore, if there is no “clean” reference device available to a user/owner to
compare a compromised device with, the risk in a way decreases again.

This level of attack can be pushed even further if a manufacturer uses some
underlying designs for entire product families. If all the crypto products of a vendor
use the same chip core for their key algorithms, introducing a vulnerability into that
core can make the entire product family vulnerable; if multiple vendors use the same
core design from an external source, even multiple manufacturers can be affected.

2.2.7 Slipstreaming Corrupted Devices

A somewhat hybrid attack that combines aspects of the previous two attack types
is to slipstream an attack into an already existing product line.

From an attacker’s point of view this has the advantage that the first, uncom-
promised specimen will receive the most intense scrutiny, while the devices sold
later on will be assumed trustworthy with regard to untargeted attacks.

This is important with regard to public scrutiny, where new device types may
receive significant extra attention; it is however even more important in contexts
which are security sensitive/aware enough to do in-depth certification based on
individual sample devices.

2.2.8 Standardization Level Attacks

The recent allegations that the NSA have actively manipulated the NIST to stan-
dardize a CPRNG algorithm demonstrates a yet broader level of untargeted attack.

The primary difference between corrupting a product line or product family
and this attack is its even broader scope. With the algorithms being publicly
known however, there is an increased risk of additional attackers identifying the
weakness by cryptographic analysis of the published design: While cryptographers
have publicly voiced concerns about the security of the design, the standard was
still established and put into implementation.

The implications of the attack are even more troubling: It shows that standard-
ization doesn’t necessarily ensure the level of security claimed by the standardizing
body. It also shows that peer review can be circumvented at this level of attack by
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leaving the burden of proof that a design is insecure to the reviewers rather than
the developers of the design.

2.2.9 Political Level Attacks

Finally, history has shown that attacks have been repeatedly at least attempted at
the political level.

Probably best known with regard to this was the attempt of the NSA to legally
restrict the use of publicly available cryptography to the Clipper chip design, which
contained a backdoor for the NSA. While this attempt eventually failed, strong
cryptograpy is still subject to legal restrictions in many countries, frequently still
rating it as military-grade arms and ammunitions.

These, and possibly the existence of “secret laws” and “secret courts” to enforce
them, may lead to situations where hardware vendors are covertly forced to install
hidden backdoors in their products. The end effect of such attacks is similar to
the standardization level attacks except that discovery of such backdoors, unless
done in an exceedingly simplistic way, is next to impossible unless the details of the
product are disclosed.

At a more mundane level, legal requirements enforcing some sort of “protection
level” which may improve protection against targeted attacks to some degree but
which make broad scale attacks almost impossible to discover, are used in many
legislations—not necessarily by intention, but by too narrow a focus on targeted
attacks.

2.3 Defense Strategies

As diverse as the attack types are the possible defense strategies. Commercial
products as of today strongly focus on targeted attacks at the expense of addressing
broader scope untargeted attacks. However, there are defenses against these attacks
as well.

2.3.1 Technical and Economic Defenses

While commercial products tend to focus solely on technical defenses with the in-
tention to make it practically impossible for attackers to break into their products,
broad scope attacks may be more easily countered by employing economic defenses.

The rationale here is that untargeted attacks are currently most convenient for
the majority of attackers—with regard to crypto hardware and also well beyond.
The risk of discovery is manageable, especially so if the backdoor can be disguised
as an accidential product fault rather than an intentional attack, the possibility
of “preemtive strikes” is enticing, and most importantly, large scale attacks are
economically much more interesting than targeted attacks.

As a consequence, untargeted attacks must be considered a major concern with
any security architecture. Trying to respond at the technical level only is likely
to be futile; combining those with leveraging the economic aspects of untargeted
attacks does however promise a significant increase in resilience against untargeted
attacks.

2.3.2 Burden of Proof and Peer Review

One of the underlying reasons for the sorry state of what is generally touted as “IT
security” is the fact that, despite its name, most of the time it isn’t. Large parts of
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the “IT security” industry should really be called “blatant IT insecurities coping”
industry instead.

In most of IT the general assumption is that “unless it’s proven beyond doubt
(preferably by being actively exploited) that there is an insecurity, any vendor’s
claim about the alleged security capabilities of their product is to be taken at face
value without further doubt”.

From personal experience, prospective customers looking crypto hardware who
ask for detailed technical information are generally fed glossy brochures which make
all sorts of claims but show little technical detail, let alone any option to validate
the claims made, let alone to audit the devices for conformance with whatever speci-
fication. More insistent requests are normally answered with more glossy brochures
claiming various certifications and still no more details. If neither the customer
nor the sales representative give up, the next step usually involves statements con-
cerning trade secrets and the fear of falling victim to patent lawsuits, and possibly
an offer to some alleged detail information provided that the customer first signs
a non-disclosure agreement which denies the right to make the discovery of any
insecurity publicly known.

What is really needed is a generally adopted attitude with regard to “IT secu-
rity” that any product has to be assumed seriously insecure unless the developer
or vendor can provide some sort of evidence that the product is sound; the related
legal term is that the vendor has to bear the “burden of proof”.

This also means that the industry needs a significant number of qualified people
to spend significant time verifying the claims of the vendors; the only good news
is that the few people these days spend time on painstakingly reverse engineering
product samples without access to the background documentation might become
more efficient once they got access to this kind of information.

2.3.3 Diversity

Possibly the most effective, but economically also the most difficult, line of defense is
to increase the number of products and product variants an attacker has to subvert.

However, IT is one of the industries most susceptible to the economics of scale;
with the tremendously large ratio of initial development cost to reproduction cost,
IT is particularly prone to few large vendors dominating the market.

The open hardware/open source/open design communities may be an alternative
to the established vendors, although anything short of a ready-to-use product from
a “reputable” source will only read a niche market in the short run.

Outside a context driven by short-term economic goals, designs that are inten-
tionally made simple to modify are considered the most effective to defend against
untargeted attacks.

2.3.4 Auditability

A second countermeasure against untargeted, large scale attacks is a design that
is intended to be auditable by third parties and reasonably equipped and qualified
end user.

This approach implies that a design is done in such a way that individual devices
can be tested non-destructively, repeatedly, and while already deployed. The nature
of most tamper-resistant or even just tamper-evident designs implicitly makes a
proper audit infeasible; it remains to be seen how these two defense mechanisms
can be combined.
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Another problem with auditable designs is the fact that they are vulnerable to
unwarranted patent claims, especially in jurisdictions where the victim of such a
claim will take significantly higher economic losses by fighting the claim in court
than by agreeing to an unwarranted out-of-court settlement. As experience with
open source software has shown, open solutions are by their nature somewhat pro-
tected against this.

If auditability is used as a defense against large scale attacks, this implies that
a design is the better the quicker it can be audited with the least necessary tools
and skills. This however contradicts the diversity approach, since only designs with
a non-negligible number of devices deployed can possibly be subject to a sufficient
level of scrutiny.

2.3.5 The KISS Principle

To make a design easy and quick to audit, it has to be designed to be simple,
as required by the more general KISS (“keep it simple, stupid”) principle known
throughout IT in general.

The first implication here is that a design that just does what it is required to
do the job is best. For example, while the Cryptech project currently tries to build
a full-blown HSM, the arrgh project only focuses on a HWRNG. If only a HWRNG
is needed, then the arrgh design is superior because of its simplicity: No hard-to-
audit FPGA, significantly reduced reliance on—possibly subverted—development
tools, and the option to assemble an individual device from scratch. On the other
hand, if the other features of an HSM are actually needed, then the Cryptech design
is obviously not just the better, but effectively the only choice between the two.

From this it already follows that diversity, not by design but by feature set, is
another valuable defense against any kind of attack.

It also follows that modular designs, where only the features needed are actually
installed, provide more resilience than an all-features-in-a-single-box designs.

2.3.6 Modularity

Aside from the feature-oriented modularity explained in the previous section, mod-
ular hardware designs are provide significantly improved protection against untar-
geted attacks.

With a modular hardware design, auditing is tremendously simplified: Individ-
ual components can be tested separately, suspect components can be connected
to a testbed that makes any possible manipulation obvious and quite generally,
modularity makes an auditor’s work significantly easier.

Another advantage of modular designs is that it allows for the modification of
individual modules or subsets of modules from a design, thereby improving diversity.

2.3.7 Choice of Components

A surprisingly complex topic is the choice of components used in an auditable design.
Not all commonly used components are suitable for an auditable and diverse design,
and sometimes it is necessary to balance functionality and security at the component
level.

Component selection criteria are considered universally helpful to increase the
difficulty of manipulations at the component level:
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Cheap, general purpose, high volume components Designs that use only or
at least mostly cheap, general purpose, high volume components are economi-
cally more difficult to subvert than designs that heavily rely on highly specific
components.

Attackers who try to manipulate such components have several problems:
Untargeted attacks are expensive due to the high volume and carry an in-
creased risk of discovery due to breaking unrelated products using the same
component for a different purpose. Targeted attacks may still be viable, but
since general purpose components are more likely to be modified than highly
specialized ones, diversity will make such attacks at least more expensive.

Multi-vendor components If equivalent components are available from multi-
ple vendors, again this makes them harder to attack: This makes for trivial
diversity, simply by choosing components from whatever vendor.

If nothing else, attackers might try to promote their compromised components
by selling them well below price; however, this again makes such an attack
economically difficult.

Simple components Simply put, it is much more difficult to subvert a 1kΩ, 5%,
250mW carbon film resistor than an FPGA chip, not only for the reasons
stated above, but because such a resistor is limited by its two terminals in the
possible attacks it may execute and because these components make for much
easier auditing.

Generally available components If components are easily obtained through a
range of distributors, or even better found in every enthusiast user’s junk parts
bin, then more targeted attacks during the delivery of these components to
the assembler become more difficult. Additionally, if components obtained
elsewhere can be used as reference for an audit, this increases the chance to
discover any manipulated ones.

Components with many alternatives Components that can be easily replaced
by similar but different components—small signal transistors immediately
come to mind—again increase diversity and generally amplify the effects of
the previous criteria again.

While all these criteria are sometimes difficult to apply, they universally improve
the security of a product.

Another question however is not as simple: The decision between through-hole
devices and surface mount devices, plus the choice of package type for ICs.

Through-hole (THT) components These components are popular with entry-
level home electronics amateurs and allow for reasonably straightforward home
etched PCBs and even perfboard implementations. However, being fairly large
they lead to large PCBs, which in turn may be operationally impractical. In
some cases the size may be sufficiently large for an attacker to hide components
underneath, especially bare die chips.

Unfortunately, with regard to ICs, some ICs are simply not available in THT
packages, either due to their pin count or due to product portfolio decisions
of the manufacturers.

Socketed vs. soldered-in THT ICs Especially with regard to ICs, THT com-
ponents have another peculiar advantage: They can be socketed rather than
soldered in. This makes auditing significantly simpler: Components can be
removed from their sockets for easier testing of both the component and the
remaining board and it is possible to inspect the PCB underneath the IC.
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Socketed ICs have disadvantages, though: Targeted attacks aiming at replac-
ing such an IC are simplified, the sockets add to bulk and weight of the entire
board, the contacts between IC and socket are known to sometimes fail and
the IC may be shaken out of the socket due to heavy vibration.

Surface mounted (SMD) components Throughout the electronics industry, sur-
face mounted components are much more popular than THT components due
to the simplified manufacturing processes, smaller board sizes and a much
wider range of components especially with regard to high pin count compo-
nents.

However, many home builders are uncomfortable soldering SMD, there is no
reasonable way to build perfboard designs and, most troublesome with regard
to auditing, SMD ICs generally can’t be socketed.

SMD component sizes SMD component come in a wide range of sizes; the larger
ones are easily soldered by home amateurs—once they’ve overcome their fear
of them—and reasonably easy to audit while still on board. Sizes of less than
0603 two-terminal packages however should only be considered if board size
is at a premium and auditing is less of an issue as it should be in the context
of this paper.

Large SMD components like ICs, possibly large electrolytic capacitors and
similar devices should be avoided if it is deemed possible to hide a bare die or
similar underneath it.

Leaded vs. unleaded SMD ICs (as in “Leeds United”, not “Led Zeppelin”)
Generally speaking, only leaded SMD ICs, preferably SOIC (50 mil pin pitch),
possibly SSOP (usually 25 mil pin pitch) and if otherwise unavailable QFP
(down to 16 mil pitch) should be used. Unleaded packages, packages with a
large heat transfer pad underneath and BGA (ball grid array) packages should
be avoided if at all possible since they can’t reasonably be soldered by a home
builder and are mostly impossible to audit.

If for some reason, BGA or similar are unavoidable, then particular care must
be taken to modularize the design in such a way that these components can
be tested in situ.

Bare dies These are even worse than BGA devices, require special machinery to
install and as such have all the disadvantages of BGA plus some more. There
should be no need to use these at all.

The problem of hidden bare dies or similar underneath ICs and other large
components may possibly be mitigated by two alternative approaches.

Milled cut-outs underneath components Given conventional (usually FR4 or
possibly FR2) PCB material it may be possible to ensure that nothing can
be hidden underneath large components by cutting/milling holes underneath
them.

At this point it is yet unknown if this affects industrial production. What is
known is that the space underneath ICs is often densely populated with traces
which will have to be routed elsewhere in this case.

Translucent flexible PCBs A possible alternative may be the use of translucent,
flexible PCB carrier material. These should be too thin to hide a bare die
underneath and allow visual inspection through the carrier material anyway.

At this point again it is yet unknown if this is practical, both for industrial
manufacture and home building; there is however evidence that this may be
feasible.
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Both of these approaches however do share a common disadvantage: They are
mechanically weaker than a solid FR4 board without cutouts.

2.3.8 Do It Yourself/Modify It Yourself Designs

A rather unusual way to maximize the effects of auditing and diversity is to involve
the end user/owner in the design and production process.

If devices are provided as kits for users to assemble them themselves, this ensures
that each devices receive significant auditing after shipping to the user. Manipula-
tions like hiding a bare die beneath a soldered-in chip become effectively impractical.

Providing only the bare PCBs and expecting the users to shop for the remaining
components themselves may additionally thwart more targeted attacks within the
supply chain.

Providing only PCB blueprints and expecting users to manufacture even the
PCBs themselves may mitigate even more attacks, however at significant economic
costs (if users individually order the boards to be custom manufactured) or less of
a reach of the project because home users won’t etch PCBs themselves.

The biggest advantage of products which require end users to finish them how-
ever is that such products may encourage end users to modify the given design,
again significantly increasing diversity.

2.3.9 Development Toolchain

Besides the consideration so far, which were either rather fundamental or hardware
centric, software is rather important. Generally speaking, the less different kinds of
tools are needed, and the more alternatives are available, the more resilient will the
design be from attacks directed towards the development toolchain.

There are at least these tools needed to design and build a cryptographic hard-
ware module:

Hardware design tools While circuit boards may in theory still be designed us-
ing paper for the schematics and transparent film for the board layout instead
of a computer, doing so is tedious and doesn’t produce the data needed for
industrial manufacture.

The key requirement to the tools used here is that they are available to as
many end users as possible. In-house only and prohibitively expensive tools
are not an option, open source—which can be audited—is preferred.

Diversity is also desirable, but since there are generally no interchangeable
formats in use, this is largely limited to the tools to verify the Gerber files
output at the end of the toolchain. With multiple Gerber viewing tools,
diversified audition of the board design is tedious but possible.

Firmware development and installation tools Components that need to run
some embedded firmware require a toolchain to develop and handle that
firmware. Since binary files are significantly more to audit than a set of
Gerber files for a board design the requirements in this case are significantly
more demanding than with the hardware design tools.

Development tools usually include compilers and possibly linkers depending
on the kind of hardware component to be programmed. For installation it is
usually necessary to use some sort of programming tool.

For auditing an extraction tool to retrieve the binary running on the com-
ponent is needed, plus multiple disassembly tools to ensure that the binary
correctly implements the original source code.
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Host side driver development and installation tools While the host that a
cryptographic device connects to is generally out of scope of this project, the
software interface between the two cannot be ignored at this point.

Generally the same considerations apply to driver development as they apply
to firmware; however, deployment is usually done through some operating
system specific means rather than some sort of physical installation interface.

Finally, all these tools should be considered in the operating environment they
are used on—from computer hardware to operating system to networking between
multiple computers possibly used.

2.3.10 Physical/Tamper Protection

Finally, what about the physical protection, or tamper resistance, or even “tamper
proofness” of commercial products?

First off, some level of tamper protection may be required for whatever legal
reasons as mentioned before. However, since these legal requirements can’t really
be changed with this paper, we mostly ignore these.

As the works of people like Ross Anderson have shown, there is little to expect
from physical protection measures against a serious attacker. The no-read flags with
some microcontroller types (called “lock bits” with Atmel for example) are known
to provide little defense against a reasonably professional product pirate, either.
In summary, any sort of tamper protection is about as good as a cheap lock on a
good bicycle: It tells the world that you want them to leave their hands off, but it
provides protection only against an opportunistic attacker, not a really determined
one.

What’s worse, and what has been explained before, physical protection puts
way too much emphasis on targeted attacks; with untargeted, large scale attacks in
mind they tend to be counterproductive because they make several other defenses
against such attacks more difficult if not impossible.

2.4 Interface Design

2.4.1 Restricted Remote Interface

2.4.2 Update Security

2.4.3 Cross Checking and Minimized Mutual Trust
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