[Cryptech-Commits] [core/math/modexpng] 23/92: Moved to "modexpng_fpga_model" repo, this one was meant for Verilog.

git at cryptech.is git at cryptech.is
Sat Mar 14 18:19:02 UTC 2020


This is an automated email from the git hooks/post-receive script.

paul at psgd.org pushed a commit to branch master
in repository core/math/modexpng.

commit ec07464d239f7f6379a682ac57b58b863d3f0374
Author: Pavel V. Shatov (Meister) <meisterpaul1 at yandex.ru>
AuthorDate: Tue Oct 1 14:25:27 2019 +0300

    Moved to "modexpng_fpga_model" repo, this one was meant for Verilog.
---
 modexpng_fpga_model.py      | 1745 -------------------------------------------
 vector/.gitignore           |    3 -
 vector/README.md            |   10 -
 vector/vector_format.py     |   67 --
 vector/vector_regenerate.py |   48 --
 vector/vector_util.py       |  319 --------
 6 files changed, 2192 deletions(-)

diff --git a/modexpng_fpga_model.py b/modexpng_fpga_model.py
deleted file mode 100644
index 325f544..0000000
--- a/modexpng_fpga_model.py
+++ /dev/null
@@ -1,1745 +0,0 @@
-#!/usr/bin/python3
-#
-#
-# ModExpNG core math model.
-#
-#
-# Copyright (c) 2019, NORDUnet A/S
-# All rights reserved.
-#
-# Redistribution and use in source and binary forms, with or without
-# modification, are permitted provided that the following conditions are
-# met:
-# - Redistributions of source code must retain the above copyright notice,
-#   this list of conditions and the following disclaimer.
-#
-# - Redistributions in binary form must reproduce the above copyright
-#   notice, this list of conditions and the following disclaimer in the
-#   documentation and/or other materials provided with the distribution.
-#
-# - Neither the name of the NORDUnet nor the names of its contributors may
-#   be used to endorse or promote products derived from this software
-#   without specific prior written permission.
-#
-# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
-# IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
-# TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
-# PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-# HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
-# TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
-# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
-# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-#
-
-
-# -------
-# Imports
-#--------
-
-import sys
-import importlib
-from enum import Enum, auto
-
-
-# --------------
-# Model Settings
-# --------------
-
-# length of public key
-KEY_LENGTH = 1024
-
-# how many parallel multipliers to use
-NUM_MULTS  = 8
-
-
-# ---------------
-# Internal Values
-# ---------------
-
-# half of key length
-_KEY_LENGTH_HALF = KEY_LENGTH // 2
-
-# width of internal math pipeline
-_WORD_WIDTH     = 16
-_WORD_WIDTH_EXT = 18
-
-_WORD_MASK     = 2 ** _WORD_WIDTH     - 1
-_WORD_MASK_EXT = 2 ** _WORD_WIDTH_EXT - 1
-_CARRY_MASK    = _WORD_MASK ^ _WORD_MASK_EXT
-
-# folder with test vector scripts
-_VECTOR_PATH = "/vector"
-
-# name of test vector class
-_VECTOR_CLASS = "Vector"
-
-
-# ------------------
-# Debugging Settings
-# ------------------
-DUMP_LADDER_INDEX      = -1     # at which ladder step to print debug vector
-DUMP_VECTORS           = False  # print entire debug vector components
-DUMP_INDICES           = False  # print indices of words at MAC inputs
-DUMP_MACS_INPUTS       = False  # print MAC input words
-DUMP_MACS_CLEARING     = False  # print MAC clearing bitmaps
-DUMP_MACS_ACCUMULATION = False  # print MAC accumulators contents
-DUMP_MULT_PARTS        = False  # print multiplication output parts
-DUMP_RECOMBINATION     = False  # print recombination internals
-DUMP_REDUCTION         = False  # print reduction internals
-FORCE_OVERFLOW         = False  # force rarely seen internal overflow situation to verify how its handler works
-DUMP_PROGRESS_FACTOR   = 16     # once per how many ladder steps to update progress indicator
-
-#
-# Multi-Precision Integer
-#
-class ModExpNG_Operand():
-
-    def __init__(self, number, length, words = None):
-
-        if words is None:
-
-            # length must be divisible by word width
-            if (length % _WORD_WIDTH) > 0:
-                raise Exception("Bad number length!")
-
-            self._init_from_number(number, length)
-
-        else:
-
-            # length must match words count
-            if len(words) != length:
-                raise Exception("Bad words count!")
-
-            self._init_from_words(words, length)
-
-    def format_verilog_concat(self, name):
-
-        for i in range(len(self.words)):
-            if i > 0:
-                if (i % 4) == 0: print("")
-                else:            print(" ", end='')
-            print("%s[%3d] = 18'h%05x;" % (name, i, self.words[i]), end='')
-        print("")
-
-    def _init_from_words(self, words, count):
-
-        for i in range(count):
-
-            # word must not exceed 18 bits
-            if words[i] >= (2 ** (_WORD_WIDTH_EXT)):
-                raise Exception("Word is too large!")
-
-        self.words = list(words)
-
-    def _init_from_number(self, number, length):
-
-        num_hexchars_per_word = _WORD_WIDTH // 4
-        num_hexchars_total = length // num_hexchars_per_word
-
-        value_hex = format(number, 'x')
-
-        # value must not be larger than specified, but it can be smaller, so
-        # we may need to prepend it with zeroes
-        if len(value_hex) > num_hexchars_total:
-            raise Exception("Number is too large!")
-        else:
-            while len(value_hex) < num_hexchars_total:
-                value_hex = "0" + value_hex
-
-        # create empty list
-        self.words = list()
-
-        # fill in words
-        while len(value_hex) > 0:
-            value_hex_part = value_hex[-num_hexchars_per_word:]
-            value_hex = value_hex[:-num_hexchars_per_word]
-            self.words.append(int(value_hex_part, 16))
-
-    def number(self):
-        ret = 0
-        shift = 0
-        for word in self.words:
-            ret += word << shift
-            shift += _WORD_WIDTH
-        return ret
-
-    def _get_half(self, part):
-        num_words = len(self.words)
-        num_words_half = num_words // 2
-        if not part: return ModExpNG_Operand(None, num_words_half, self.words[:num_words_half])
-        else:        return ModExpNG_Operand(None, num_words_half, self.words[num_words_half:])
-
-    def lower_half(self):
-        return self._get_half(False)
-
-    def upper_half(self):
-        return self._get_half(True)
-
-#
-# Test Vector
-#
-class ModExpNG_TestVector():
-
-    def __init__(self):
-
-        # format target filename
-        filename = "vector_" + str(KEY_LENGTH) + "_randomized"
-
-        # add ./vector to import search path
-        sys.path.insert(1, sys.path[0] + _VECTOR_PATH)
-
-        # import from filename
-        vector_module = importlib.import_module(filename)
-
-        # get vector class
-        vector_class = getattr(vector_module, _VECTOR_CLASS)
-
-        # instantiate vector class
-        vector_inst = vector_class()
-
-        # obtain parts of vector
-        self.m        = ModExpNG_Operand(vector_inst.m,         KEY_LENGTH)
-        self.n        = ModExpNG_Operand(vector_inst.n,         KEY_LENGTH)
-        self.d        = ModExpNG_Operand(vector_inst.d,         KEY_LENGTH)
-        self.p        = ModExpNG_Operand(vector_inst.p,        _KEY_LENGTH_HALF)
-        self.q        = ModExpNG_Operand(vector_inst.q,        _KEY_LENGTH_HALF)
-        self.dp       = ModExpNG_Operand(vector_inst.dp,       _KEY_LENGTH_HALF)
-        self.dq       = ModExpNG_Operand(vector_inst.dq,       _KEY_LENGTH_HALF)
-        self.qinv     = ModExpNG_Operand(vector_inst.qinv,     _KEY_LENGTH_HALF)
-        self.n_factor = ModExpNG_Operand(vector_inst.n_factor,  KEY_LENGTH)
-        self.p_factor = ModExpNG_Operand(vector_inst.p_factor, _KEY_LENGTH_HALF)
-        self.q_factor = ModExpNG_Operand(vector_inst.q_factor, _KEY_LENGTH_HALF)
-        self.n_coeff  = ModExpNG_Operand(vector_inst.n_coeff,   KEY_LENGTH      + _WORD_WIDTH)
-        self.p_coeff  = ModExpNG_Operand(vector_inst.p_coeff,  _KEY_LENGTH_HALF + _WORD_WIDTH)
-        self.q_coeff  = ModExpNG_Operand(vector_inst.q_coeff,  _KEY_LENGTH_HALF + _WORD_WIDTH)
-        self.x        = ModExpNG_Operand(vector_inst.x,         KEY_LENGTH)
-        self.y        = ModExpNG_Operand(vector_inst.y,         KEY_LENGTH)
-
-class ModExpNG_WideBankEnum(Enum):
-    A   = auto()
-    B   = auto()
-    C   = auto()
-    D   = auto()
-    E   = auto()
-    N   = auto()
-    L   = auto()
-    H   = auto()
-
-class ModExpNG_NarrowBankEnum(Enum):
-    A       = auto()
-    B       = auto()
-    C       = auto()
-    D       = auto()
-    E       = auto()
-    N_COEFF = auto()
-    I       = auto()
-
-class ModExpNG_CoreInputEnum(Enum):
-    M        = auto()
-
-    N        = auto()
-    P        = auto()
-    Q        = auto()
-
-    N_COEFF  = auto()
-    P_COEFF  = auto()
-    Q_COEFF  = auto()
-
-    N_FACTOR = auto()
-    P_FACTOR = auto()
-    Q_FACTOR = auto()
-
-    X        = auto()
-    Y        = auto()
-
-    QINV     = auto()
-
-class ModExpNG_CoreOutputEnum(Enum):
-    XM = auto()
-    YM = auto()
-    S  = auto()
-
-class ModExpNG_WideBank():
-
-    def __init__(self):
-        self.a = None
-        self.b = None
-        self.c = None
-        self.d = None
-        self.e = None
-        self.n = None
-        self.l = None
-        self.h = None
-
-    def _get_value(self, sel):
-        if   sel == ModExpNG_WideBankEnum.A:   return self.a
-        elif sel == ModExpNG_WideBankEnum.B:   return self.b
-        elif sel == ModExpNG_WideBankEnum.C:   return self.c
-        elif sel == ModExpNG_WideBankEnum.D:   return self.d
-        elif sel == ModExpNG_WideBankEnum.E:   return self.e
-        elif sel == ModExpNG_WideBankEnum.N:   return self.n
-        elif sel == ModExpNG_WideBankEnum.L:   return self.l
-        elif sel == ModExpNG_WideBankEnum.H:   return self.h
-        else: raise Exception("ModExpNG_WideBank._get_value(): Invalid selector!")
-
-    def _set_value(self, sel, value):
-        if   sel == ModExpNG_WideBankEnum.A:   self.a   = value
-        elif sel == ModExpNG_WideBankEnum.B:   self.b   = value
-        elif sel == ModExpNG_WideBankEnum.C:   self.c   = value
-        elif sel == ModExpNG_WideBankEnum.D:   self.d   = value
-        elif sel == ModExpNG_WideBankEnum.E:   self.e   = value
-        elif sel == ModExpNG_WideBankEnum.N:   self.n   = value
-        elif sel == ModExpNG_WideBankEnum.L:   self.l   = value
-        elif sel == ModExpNG_WideBankEnum.H:   self.h   = value
-        else: raise Exception("ModExpNG_WideBank._set_value(): Invalid selector!")
-
-class ModExpNG_NarrowBank():
-
-    def __init__(self, i):
-        self.a       = None
-        self.b       = None
-        self.c       = None
-        self.d       = None
-        self.e       = None
-        self.n_coeff = None
-        self.i       = i
-
-    def _get_value(self, sel):
-        if   sel == ModExpNG_NarrowBankEnum.A:       return self.a
-        elif sel == ModExpNG_NarrowBankEnum.B:       return self.b
-        elif sel == ModExpNG_NarrowBankEnum.C:       return self.c
-        elif sel == ModExpNG_NarrowBankEnum.D:       return self.d
-        elif sel == ModExpNG_NarrowBankEnum.E:       return self.e
-        elif sel == ModExpNG_NarrowBankEnum.N_COEFF: return self.n_coeff
-        elif sel == ModExpNG_NarrowBankEnum.I:       return self.i
-        else: raise Exception("ModExpNG_NarrowBank._get_value(): Invalid selector!")
-
-    def _set_value(self, sel, value):
-        if   sel == ModExpNG_NarrowBankEnum.A:       self.a       = value
-        elif sel == ModExpNG_NarrowBankEnum.B:       self.b       = value
-        elif sel == ModExpNG_NarrowBankEnum.C:       self.c       = value
-        elif sel == ModExpNG_NarrowBankEnum.D:       self.d       = value
-        elif sel == ModExpNG_NarrowBankEnum.E:       self.e       = value
-        elif sel == ModExpNG_NarrowBankEnum.N_COEFF: self.n_coeff = value
-        else: raise Exception("ModExpNG_NarrowBank._set_value(): Invalid selector!")
-
-class ModExpNG_CoreInput():
-
-    def __init__(self):
-        self._m        = None
-
-        self._n        = None
-        self._p        = None
-        self._q        = None
-
-        self._n_coeff  = None
-        self._p_coeff  = None
-        self._q_coeff  = None
-
-        self._n_factor = None
-        self._p_factor = None
-        self._q_factor = None
-
-        self._x        = None
-        self._y        = None
-
-        self._qinv     = None
-
-    def set_value(self, sel, value):
-        if   sel == ModExpNG_CoreInputEnum.M:        self._m        = value
-
-        elif sel == ModExpNG_CoreInputEnum.N:        self._n        = value
-        elif sel == ModExpNG_CoreInputEnum.P:        self._p        = value
-        elif sel == ModExpNG_CoreInputEnum.Q:        self._q        = value
-
-        elif sel == ModExpNG_CoreInputEnum.N_COEFF:  self._n_coeff  = value
-        elif sel == ModExpNG_CoreInputEnum.P_COEFF:  self._p_coeff  = value
-        elif sel == ModExpNG_CoreInputEnum.Q_COEFF:  self._q_coeff  = value
-
-        elif sel == ModExpNG_CoreInputEnum.N_FACTOR: self._n_factor = value
-        elif sel == ModExpNG_CoreInputEnum.P_FACTOR: self._p_factor = value
-        elif sel == ModExpNG_CoreInputEnum.Q_FACTOR: self._q_factor = value
-
-        elif sel == ModExpNG_CoreInputEnum.X:        self._x        = value
-        elif sel == ModExpNG_CoreInputEnum.Y:        self._y        = value
-
-        elif sel == ModExpNG_CoreInputEnum.QINV:     self._qinv     = value
-
-        else: raise Exception("ModExpNG_CoreInput.set_value(): invalid selector!")
-
-    def _get_value(self, sel):
-        if   sel == ModExpNG_CoreInputEnum.M:        return self._m
-
-        elif sel == ModExpNG_CoreInputEnum.N:        return self._n
-        elif sel == ModExpNG_CoreInputEnum.P:        return self._p
-        elif sel == ModExpNG_CoreInputEnum.Q:        return self._q
-
-        elif sel == ModExpNG_CoreInputEnum.N_COEFF:  return self._n_coeff
-        elif sel == ModExpNG_CoreInputEnum.P_COEFF:  return self._p_coeff
-        elif sel == ModExpNG_CoreInputEnum.Q_COEFF:  return self._q_coeff
-
-        elif sel == ModExpNG_CoreInputEnum.N_FACTOR: return self._n_factor
-        elif sel == ModExpNG_CoreInputEnum.P_FACTOR: return self._p_factor
-        elif sel == ModExpNG_CoreInputEnum.Q_FACTOR: return self._q_factor
-
-        elif sel == ModExpNG_CoreInputEnum.X:        return self._x
-        elif sel == ModExpNG_CoreInputEnum.Y:        return self._y
-
-        elif sel == ModExpNG_CoreInputEnum.QINV:     return self._qinv
-
-        else: raise Exception("ModExpNG_CoreInput._get_value(): invalid selector!")
-
-class ModExpNG_CoreOutput():
-
-    def __init__(self):
-        self._xm = None
-        self._ym = None
-        self._s  = None
-
-    def _set_value(self, sel, value):
-        if   sel == ModExpNG_CoreOutputEnum.XM: self._xm = value
-        elif sel == ModExpNG_CoreOutputEnum.YM: self._ym = value
-        elif sel == ModExpNG_CoreOutputEnum.S:  self._s  = value
-        else: raise Exception("ModExpNG_CoreOutput._set_value(): invalid selector!")
-
-    def get_value(self, sel):
-        if   sel == ModExpNG_CoreOutputEnum.XM: return self._xm
-        elif sel == ModExpNG_CoreOutputEnum.YM: return self._ym
-        elif sel == ModExpNG_CoreOutputEnum.S:  return self._s
-        else: raise Exception("ModExpNG_CoreOutput.get_value(): invalid selector!")
-
-class ModExpNG_BanksPair():
-
-    def __init__(self, i):
-        self.wide = ModExpNG_WideBank()
-        self.narrow = ModExpNG_NarrowBank(i)
-
-    def _get_wide(self, sel):
-        return self.wide._get_value(sel)
-
-    def _get_narrow(self, sel):
-        return self.narrow._get_value(sel)
-
-    def _set_wide(self, sel, value):
-        self.wide._set_value(sel, value)
-
-    def _set_narrow(self, sel, value):
-        self.narrow._set_value(sel, value)
-
-class ModExpNG_BanksLadder():
-
-    def __init__(self, i):
-        self.ladder_x = ModExpNG_BanksPair(i)
-        self.ladder_y = ModExpNG_BanksPair(i)
-
-class ModExpNG_BanksCRT():
-
-    def __init__(self, i):
-        self.crt_x = ModExpNG_BanksLadder(i)
-        self.crt_y = ModExpNG_BanksLadder(i)
-
-class ModExpNG_PartRecombinator():
-
-    def _bit_select(self, x, msb, lsb):
-        y = 0
-        for pos in range(lsb, msb+1):
-            y |= (x & (1 << pos)) >> lsb
-        return y
-
-    def _flush_pipeline(self, dump):
-        self.z0, self.y0, self.x0 = 0, 0, 0
-        if dump and DUMP_RECOMBINATION:
-            print("RCMB -> flush()")
-
-    def _push_pipeline(self, part, dump):
-
-        # split next part into 16-bit words
-        z = self._bit_select(part, 46, 32)
-        y = self._bit_select(part, 31, 16)
-        x = self._bit_select(part, 15,  0)
-
-        # shift to the right
-        z1 = z
-        y1 = y + self.z0
-        x1 = x + self.y0 + (self.x0 >> _WORD_WIDTH) # IMPORTANT: This carry can be up to two bits wide!!
-
-        # save lower 16 bits of the rightmost cell
-        t = self.x0 & _WORD_MASK
-
-        # update internal latches
-        self.z0, self.y0, self.x0 = z1, y1, x1
-
-        # dump
-        if dump and DUMP_RECOMBINATION:
-            print("RCMB -> push(): part = 0x%012x, word = 0x%04x" % (part, t))
-
-        # done
-        return t
-
-    def recombine_square(self, parts, ab_num_words, dump):
-
-        # empty results so far
-        words_lsb = list()  # n words
-        words_msb = list()  # n words
-
-        # recombine the lower half (n parts)
-        # the first tick produces null result, the last part
-        # produces three words and needs two extra ticks
-        self._flush_pipeline(dump)
-        for i in range(ab_num_words + 1 + 2):
-            next_part = parts[i] if i < ab_num_words else 0
-            next_word = self._push_pipeline(next_part, dump)
-
-            if i > 0:
-                words_lsb.append(next_word)
-
-        # recombine the upper half (n-1 parts)
-        # the first tick produces null result
-        self._flush_pipeline(dump)
-        for i in range(ab_num_words + 1):
-            next_part = parts[i + ab_num_words] if i < (ab_num_words - 1) else 0
-            next_word = self._push_pipeline(next_part, dump)
-
-            if i > 0:
-                words_msb.append(next_word)
-
-        # merge words
-        words = list()
-
-        # merge lower half
-        for x in range(ab_num_words):
-            next_word = words_lsb[x]
-            words.append(next_word)
-
-        # merge upper half adding the two overlapping words
-        for x in range(ab_num_words):
-            next_word = words_msb[x]
-            if x < 2:
-                next_word += words_lsb[x + ab_num_words]
-            words.append(next_word)
-
-        return words
-
-    def recombine_triangle(self, parts, ab_num_words, dump):
-
-        # empty result so far
-        words_lsb = list()
-
-        # recombine the lower half (n+1 parts)
-        # the first tick produces null result, so we need n + 1 + 1 = n + 2
-        # ticks total and should only save the result word during the last
-        # n + 1 ticks
-        self._flush_pipeline(dump)
-        for i in range(ab_num_words + 2):
-
-            next_part = parts[i] if i < (ab_num_words + 1) else 0
-            next_word = self._push_pipeline(next_part, dump)
-
-            if i > 0:
-                words_lsb.append(next_word)
-
-        return words_lsb
-
-    def recombine_rectangle(self, parts, ab_num_words, dump):
-
-        # empty result so far
-        words_lsb = list()  # n words
-        words_msb = list()  # n+1 words
-
-        # recombine the lower half (n parts)
-        # the first tick produces null result, the last part
-        # produces three words and needs two extra ticks
-        self._flush_pipeline(dump)
-        for i in range(ab_num_words + 1 + 2):
-            next_part = parts[i] if i < ab_num_words else 0
-            next_word = self._push_pipeline(next_part, dump)
-
-            if i > 0:
-                words_lsb.append(next_word)
-
-        # recombine the upper half (n parts)
-        # the first tick produces null result, the last part
-        # produces two words and needs an extra tick
-        self._flush_pipeline(dump)
-        for i in range(ab_num_words + 2):
-            next_part = parts[i + ab_num_words] if i < ab_num_words else 0
-            next_word = self._push_pipeline(next_part, dump)
-
-            if i > 0:
-                words_msb.append(next_word)
-
-        # merge words
-        words = list()
-
-        # merge lower half
-        for x in range(ab_num_words):
-            next_word = words_lsb[x]
-            words.append(next_word)
-
-        # merge upper half adding the two overlapping words
-        for x in range(ab_num_words + 1):
-            next_word = words_msb[x]
-            if x < 2:
-                next_word += words_lsb[x + ab_num_words]
-            words.append(next_word)
-
-        return words
-
-class ModExpNG_WordMultiplier():
-
-    def __init__(self):
-
-        self._macs = list()
-        self._indices = list()
-
-        self._mac_aux = list()
-        self._index_aux = list()
-
-        for x in range(NUM_MULTS):
-            self._macs.append(0)
-            self._indices.append(0)
-
-        self._mac_aux.append(0)
-        self._index_aux.append(0)
-
-    def _clear_all_macs(self, t, col, dump):
-        for x in range(NUM_MULTS):
-            self._macs[x] = 0
-        if dump and DUMP_MACS_CLEARING:
-            print("t=%2d, col=%2d > clear > all" % (t, col))
-
-    def _clear_one_mac(self, x, t, col, dump):
-        self._macs[x] = 0
-        if dump and DUMP_MACS_CLEARING:
-            print("t=%2d, col=%2d > clear > x=%d" % (t, col, x))
-
-    def _clear_mac_aux(self, t, col, dump):
-        self._mac_aux[0] = 0
-        if dump and DUMP_MACS_CLEARING:
-            print("t= 0, col=%2d > clear > aux" % (col))
-
-    def _update_one_mac(self, x, t, col, a, b, dump, need_aux=False):
-
-        if a >= (2 ** _WORD_WIDTH_EXT):
-            raise Exception("a > 0x3FFFF!")
-
-        if b >= (2 ** _WORD_WIDTH):
-            raise Exception("b > 0xFFFF!")
-
-        p = a * b
-        if dump and DUMP_MACS_INPUTS:
-            if x == 0: print("t=%2d, col=%2d > b=%05x > " % (t, col, b), end='')
-            if x > 0: print("; ", end='')
-            print("MAC[%d]: a=%05x" % (x, a), end='')
-            if x == (NUM_MULTS-1) and not need_aux: print("")
-
-        self._macs[x] += p
-
-    def _update_mac_aux(self, y, col, a, b, dump):
-
-        if a >= (2 ** _WORD_WIDTH_EXT):
-            raise Exception("a > 0x3FFFF!")
-
-        if b >= (2 ** _WORD_WIDTH):
-            raise Exception("b > 0xFFFF!")
-
-        p = a * b
-        if dump and DUMP_MACS_INPUTS:
-            print("; AUX: a=%05x" % a)
-            
-        self._mac_aux[0] += p
-
-    def _preset_indices(self, col):
-        for x in range(len(self._indices)):
-            self._indices[x] = col * len(self._indices) + x
-
-    def _preset_index_aux(self, num_cols):
-        self._index_aux[0] = num_cols * len(self._indices)
-
-    def _dump_macs_helper(self, t, col, aux=False):
-        print("t=%2d, col=%2d > "% (t, col), end='')
-        for i in range(NUM_MULTS):
-            if i > 0: print(" | ", end='')
-            print("mac[%d]: 0x%012x" % (i, self._macs[i]), end='')
-        if aux:
-            print(" | mac_aux[ 0]: 0x%012x" % (self._mac_aux[0]), end='')
-        print("")
-
-    def _dump_macs(self, t, col):
-        self._dump_macs_helper(t, col)
-
-    def _dump_macs_with_aux(self, t, col):
-        self._dump_macs_helper(t, col, True)
-
-    def _dump_indices_helper(self, t, col, aux=False):
-        print("t=%2d, col=%2d > indices:" % (t, col), end='')
-        for i in range(NUM_MULTS):
-            print(" %2d" % self._indices[i], end='')
-        if aux:
-            print(" %2d" % self._index_aux[0], end='')
-        print("")
-
-    def _dump_indices(self, t, col):
-        self._dump_indices_helper(t, col)
-
-    def _dump_indices_with_aux(self, t, col):
-        self._dump_indices_helper(t, col, True)
-
-    def _rotate_indices(self, num_words):
-        for x in range(len(self._indices)):
-            if self._indices[x] > 0:
-                self._indices[x] -= 1
-            else:
-                self._indices[x] = num_words - 1
-
-    def _rotate_index_aux(self):
-        self._index_aux[0] -= 1
-
-    def _mult_store_part(self, parts, time, column, part_index, mac_index, dump):
-        parts[part_index] = self._macs[mac_index]
-        if dump and DUMP_MULT_PARTS:
-            print("t=%2d, col=%2d > parts[%2d]: mac[%d] = 0x%012x" %
-                (time, column, part_index, mac_index, parts[part_index]))
-
-    def _mult_store_part_aux(self, parts, time, column, part_index, dump):
-        parts[part_index] = self._mac_aux[0]
-        if dump and DUMP_MULT_PARTS:
-            print("t=%2d, col=%2d > parts[%2d]: mac_aux[%d] = 0x%012x" %
-                (time, column, part_index, 0, parts[part_index]))
-
-    def multiply_square(self, a_wide, b_narrow, ab_num_words, dump=False):
-
-        num_cols = ab_num_words // NUM_MULTS
-
-        parts = list()
-        for i in range(2 * ab_num_words - 1):
-            parts.append(0)
-
-        for col in range(num_cols):
-
-            b_carry = 0
-
-            for t in range(ab_num_words):
-
-                # take care of indices
-                if t == 0: self._preset_indices(col)
-                else:      self._rotate_indices(ab_num_words)
-
-                # take care of macs
-                if t == 0:
-                    self._clear_all_macs(t, col, dump)
-                else:
-                    t1 = t - 1
-                    if (t1 // 8) == col:
-                        self._clear_one_mac(t1 % NUM_MULTS, t, col, dump)
-
-                # debug output
-                if dump and DUMP_INDICES: self._dump_indices(t, col)
-
-                # current b-word
-                # multiplier's b-input is limited to 16-bit words, so we need to propagate
-                # carries on the fly here, carry can be up to two bits
-                bt = b_narrow.words[t] + b_carry
-                b_carry = (bt & _CARRY_MASK) >> _WORD_WIDTH
-                if dump and b_carry > 1:
-                    print("Rare overflow case was detected and then successfully corrected.")
-                bt &= _WORD_MASK
-
-                # multiply by a-words
-                for x in range(NUM_MULTS):
-                    ax = a_wide.words[self._indices[x]]
-                    self._update_one_mac(x, t, col, ax, bt, dump)
-
-                    if t == (col * NUM_MULTS + x):
-                        part_index = t
-                        self._mult_store_part(parts, t, col, part_index, x, dump)
-
-                # debug output
-                if dump and DUMP_MACS_ACCUMULATION: self._dump_macs(t, col)
-
-                # save the uppers part of product at end of column,
-                # for the last column don't save the very last part
-                if t == (ab_num_words - 1):
-                    for x in range(NUM_MULTS):
-                        if not (col == (num_cols - 1) and x == (NUM_MULTS - 1)):
-                            part_index = ab_num_words + col * NUM_MULTS + x
-                            self._mult_store_part(parts, t, col, part_index, x, dump)
-
-        return parts
-
-    def multiply_triangle(self, a_wide, b_narrow, ab_num_words, dump=False):
-
-        num_cols = ab_num_words // NUM_MULTS
-
-        parts = list()
-        for i in range(ab_num_words + 1):
-            parts.append(0)
-
-        for col in range(num_cols):
-
-            last_col = col == (num_cols - 1)
-
-            for t in range(ab_num_words + 1):
-
-                # take care of indices
-                if t == 0: self._preset_indices(col)
-                else:      self._rotate_indices(ab_num_words)
-
-                # take care of auxilary index
-                if last_col:
-                    if t == 0: self._preset_index_aux(num_cols)
-                    else:      self._rotate_index_aux()
-
-                # take care of macs
-                if t == 0: self._clear_all_macs(t, col, dump)
-
-                # take care of auxilary mac
-                if last_col:
-                    if t == 0: self._clear_mac_aux(t, col, dump)
-
-                # debug output
-                if dump and DUMP_INDICES: self._dump_indices_with_aux(t, col)
-
-                # current b-word
-                bt = b_narrow.words[t]
-
-                # multiply by a-words
-                for x in range(NUM_MULTS):
-                    ax = a_wide.words[self._indices[x]]
-                    self._update_one_mac(x, t, col, ax, bt, dump, last_col)
-
-                    if t == (col * NUM_MULTS + x):
-                        part_index = t
-                        self._mult_store_part(parts, t, col, part_index, x, dump)
-
-                # aux multiplier
-                if last_col:
-                    ax = a_wide.words[self._index_aux[0]]
-                    self._update_mac_aux(t, col, ax, bt, dump)
-
-                    if t == ab_num_words:
-                        part_index = t
-                        self._mult_store_part_aux(parts, t, col, part_index, dump)
-
-                # debug output
-                if dump and DUMP_MACS_ACCUMULATION: self._dump_macs_with_aux(t, col)
-
-                # shortcut
-                if not last_col:
-                    if t == (NUM_MULTS * (col + 1) - 1): break
-
-        return parts
-
-    def multiply_rectangle(self, a_wide, b_narrow, ab_num_words, dump=False):
-
-        num_cols = ab_num_words // NUM_MULTS
-
-        parts = list()
-        for i in range(2 * ab_num_words):
-            parts.append(0)
-
-        for col in range(num_cols):
-
-            for t in range(ab_num_words + 1):
-
-                # take care of indices
-                if t == 0: self._preset_indices(col)
-                else:      self._rotate_indices(ab_num_words)
-
-                # take care of macs
-                if t == 0:
-                    self._clear_all_macs(t, col, dump)
-                else:
-                    t1 = t - 1
-                    if (t1 // 8) == col:
-                        self._clear_one_mac(t1 % NUM_MULTS, t, col, dump)
-
-                # debug output
-                if dump and DUMP_INDICES: self._dump_indices(t, col)
-
-                # current b-word
-                bt = b_narrow.words[t]
-
-                # multiply by a-words
-                for x in range(NUM_MULTS):
-                    ax = a_wide.words[self._indices[x]]
-                    self._update_one_mac(x, t, col, ax, bt, dump)
-
-                    # don't save one value for the very last time instant per column
-                    if t < ab_num_words and t == (col * NUM_MULTS + x):
-                        part_index = t
-                        self._mult_store_part(parts, t, col, part_index, x, dump)
-
-                # debug output
-                if dump and DUMP_MACS_ACCUMULATION: self._dump_macs(t, col)
-
-                # save the upper parts of product at end of column
-                if t == ab_num_words:
-                    for x in range(NUM_MULTS):
-                        part_index = ab_num_words + col * NUM_MULTS + x
-                        self._mult_store_part(parts, t, col, part_index, x, dump)
-
-        return parts
-
-class ModExpNG_LowlevelOperator():
-
-    def _check_word(self, a):
-        if a < 0 or a > _WORD_MASK:
-            raise Exception("Word out of range!")
-
-    def _check_carry_borrow(self, cb):
-        if cb < 0 or cb > 1:
-            raise Exception("Carry or borrow out of range!")
-
-    def add_words(self, a, b, c_in):
-
-        self._check_word(a)
-        self._check_word(b)
-        self._check_carry_borrow(c_in)
-
-        sum = a + b + c_in
-
-        sum_s = sum & _WORD_MASK
-        sum_c = sum >> _WORD_WIDTH
-
-        return (sum_c, sum_s)
-
-    def sub_words(self, a, b, b_in):
-
-        self._check_word(a)
-        self._check_word(b)
-        self._check_carry_borrow(b_in)
-
-        dif = a - b - b_in
-
-        if dif < 0:
-            dif_b = 1
-            dif_d = dif + 2 ** _WORD_WIDTH
-        else:
-            dif_b = 0
-            dif_d = dif
-
-        return (dif_b, dif_d)
-
-class ModExpNG_Worker():
-
-    def __init__(self):
-        self.lowlevel     = ModExpNG_LowlevelOperator()
-        self.multiplier   = ModExpNG_WordMultiplier()
-        self.recombinator = ModExpNG_PartRecombinator()
-
-    def serial_subtract_modular(self, a, b, n, ab_num_words):
-        c_in = 0
-        b_in = 0
-        ab = list()
-        ab_n = list()
-        for x in range(ab_num_words):
-            a_word = a.words[x]
-            b_word = b.words[x]
-            (b_out, d_out) = self.lowlevel.sub_words(a_word, b_word, b_in)
-            (c_out, s_out) = self.lowlevel.add_words(d_out, n.words[x], c_in)
-            ab.append(d_out)
-            ab_n.append(s_out)
-            (c_in, b_in) = (c_out, b_out)
-        d = ab if not b_out else ab_n
-        return ModExpNG_Operand(None, ab_num_words, d)
-
-    def serial_add_uneven(self, a, b, ab_num_words):
-        c_in = 0
-        ab = list()
-        for x in range(2 * ab_num_words):
-            a_word = a.words[x] if x < ab_num_words else 0
-            b_word = b.words[x]
-            (c_out, s_out) = self.lowlevel.add_words(a_word, b_word, c_in)
-            ab.append(s_out)
-            c_in = c_out
-        return ModExpNG_Operand(None, 2*ab_num_words, ab)
-
-    def multipurpose_multiply(self, a, b, n, n_coeff, ab_num_words, reduce_only=False, multiply_only=False, dump=False, dump_crt="", dump_ladder=""):
-
-        #
-        # 1. AB = A * B
-        #
-        if dump: print("multiply_square(%s_%s)" % (dump_crt, dump_ladder))
-
-        if reduce_only:
-            ab = b
-        else:
-            ab_parts = self.multiplier.multiply_square(a, b, ab_num_words, dump)
-            ab_words = self.recombinator.recombine_square(ab_parts, ab_num_words, dump)
-            ab = ModExpNG_Operand(None, 2 * ab_num_words, ab_words)
-
-        if dump and DUMP_VECTORS:
-            ab.format_verilog_concat("%s_%s_AB" % (dump_crt, dump_ladder))
-
-        if multiply_only:
-            return ModExpNG_Operand(None, 2*ab_num_words, ab_words)
-
-        #
-        # 2. Q = LSB(AB) * N_COEFF
-        #
-        if dump: print("multiply_triangle(%s_%s)" % (dump_crt, dump_ladder))
-
-        q_parts = self.multiplier.multiply_triangle(ab, n_coeff, ab_num_words, dump)
-        q_words = self.recombinator.recombine_triangle(q_parts, ab_num_words, dump)
-        q = ModExpNG_Operand(None, ab_num_words + 1, q_words)
-
-        if dump and DUMP_VECTORS:
-            q.format_verilog_concat("%s_%s_Q" % (dump_crt, dump_ladder))
-
-        #
-        # 3. M = Q * N
-        #
-        if dump: print("multiply_rectangle(%s_%s)" % (dump_crt, dump_ladder))
-
-        m_parts = self.multiplier.multiply_rectangle(n, q, ab_num_words, dump)
-        m_words = self.recombinator.recombine_rectangle(m_parts, ab_num_words, dump)
-        m = ModExpNG_Operand(None, 2 * ab_num_words + 1, m_words)
-
-        if dump and DUMP_VECTORS:
-            m.format_verilog_concat("%s_%s_M" % (dump_crt, dump_ladder))
-
-        #
-        # 4. R = AB + M
-        #
-
-        #
-        # 4a. compute carry (actual sum is all zeroes and need not be stored)
-        #
-        
-        r_cy = 0 # this can be up to two bits, since we're adding extended words!!
-        for i in range(ab_num_words + 1):
-            s = ab.words[i] + m.words[i] + r_cy
-            r_cy_new = s >> _WORD_WIDTH
-
-            if dump and DUMP_REDUCTION:
-                print("[%2d] 0x%05x + 0x%05x + 0x%x => {0x%x, [0x%05x]}" %
-                    (i, ab.words[i], m.words[i], r_cy, r_cy_new, s & 0xffff))   # ???
-
-            r_cy = r_cy_new
-
-
-        #
-        # 4b. Initialize empty result
-        #
-        
-        R = list()
-        for i in range(ab_num_words):
-            R.append(0)
-
-        #
-        # 4c. compute the actual upper part of sum (take carry into account)
-        #
-        
-        for i in range(ab_num_words):
-
-            if dump and DUMP_REDUCTION:
-                print("[%2d]" % i, end='')
-
-            ab_word = ab.words[ab_num_words + i + 1] if i < (ab_num_words - 1) else 0
-            if dump and DUMP_REDUCTION:
-                print(" 0x%05x" % ab_word, end='')
-
-            m_word = m.words[ab_num_words + i + 1]
-            if dump and DUMP_REDUCTION:
-                print(" + 0x%05x" % m_word, end='')
-
-            if i == 0: R[i] = r_cy
-            else:      R[i] = 0
-
-            if dump and DUMP_REDUCTION:
-                print(" + 0x%x" % R[i], end='')
-
-            R[i] += ab_word
-            R[i] += m_word
-            if dump and DUMP_REDUCTION:
-                print(" = 0x%05x" % R[i])
-
-        return ModExpNG_Operand(None, ab_num_words, R)
-
-    def convert_nonredundant(self, a, num_words):
-        carry = 0
-        for x in range(num_words):
-            a.words[x] += carry
-            carry = a.words[x] >> _WORD_WIDTH
-            a.words[x] &= _WORD_MASK
-        return carry
-
-class ModExpNG_Core():
-
-    def __init__(self, i):
-        self.wrk = ModExpNG_Worker()
-        self.bnk = ModExpNG_BanksCRT(i)
-        self.inp = ModExpNG_CoreInput()
-        self.out = ModExpNG_CoreOutput()
-
-    #
-    # CRT_(X|Y) means either CRT_X or CRT_Y
-    # LADDER_{X,Y} means both LADDER_X and LADDER_Y
-    #
-
-    #
-    # copy from CRT_(X|Y).LADDER_X.NARROW to OUTPUT
-    #
-    def set_output_from_narrow(self, sel_output, bank_crt, sel_narrow):
-        self.out._set_value(sel_output, bank_crt.ladder_x._get_narrow(sel_narrow))
-
-    #
-    # copy from INPUT to CRT_(X|Y).LADDER_{X,Y}.NARROW
-    #
-    def set_narrow_from_input(self, bank_crt, sel_narrow, sel_input):
-        bank_crt.ladder_x._set_narrow(sel_narrow, self.inp._get_value(sel_input))
-        bank_crt.ladder_y._set_narrow(sel_narrow, self.inp._get_value(sel_input))
-
-    #
-    # copy from INPUT to CRT_(X|Y).LADDER_{X,Y}.WIDE
-    #
-    def set_wide_from_input(self, bank_crt, sel_wide, sel_input):
-        bank_crt.ladder_x._set_wide(sel_wide, self.inp._get_value(sel_input))
-        bank_crt.ladder_y._set_wide(sel_wide, self.inp._get_value(sel_input))
-
-    #
-    # copy from CRT_Y.LADDER_{X,Y}.{WIDE,NARROW} to CRT_X.LADDER_{X,Y}.{WIDE,NARROW}
-    #
-    def copy_crt_y2x(self, sel_wide, sel_narrow):
-
-        self.bnk.crt_x.ladder_x._set_wide(sel_wide, self.bnk.crt_y.ladder_x._get_wide(sel_wide))
-        self.bnk.crt_x.ladder_y._set_wide(sel_wide, self.bnk.crt_y.ladder_y._get_wide(sel_wide))
-
-        self.bnk.crt_x.ladder_x._set_narrow(sel_narrow, self.bnk.crt_y.ladder_x._get_narrow(sel_narrow))
-        self.bnk.crt_x.ladder_y._set_narrow(sel_narrow, self.bnk.crt_y.ladder_y._get_narrow(sel_narrow))
-
-    #
-    # copy from CRT_{X,Y}.LADDER_X.{WIDE,NARROW} to CRT_{X,Y}.LADDER_Y.{WIDE,NARROW}
-    #
-    def copy_ladders_x2y(self, sel_wide_in, sel_narrow_in, sel_wide_out, sel_narrow_out):
-
-        self.bnk.crt_x.ladder_y._set_wide(sel_wide_out, self.bnk.crt_x.ladder_x._get_wide(sel_wide_in))
-        self.bnk.crt_y.ladder_y._set_wide(sel_wide_out, self.bnk.crt_y.ladder_x._get_wide(sel_wide_in))
-
-        self.bnk.crt_x.ladder_y._set_narrow(sel_narrow_out, self.bnk.crt_x.ladder_x._get_narrow(sel_narrow_in))
-        self.bnk.crt_y.ladder_y._set_narrow(sel_narrow_out, self.bnk.crt_y.ladder_x._get_narrow(sel_narrow_in))
-
-    #
-    # copy from CRT_{X,Y}.LADDER_Y.{WIDE,NARROW} to CRT_{X,Y}.LADDER_X.{WIDE,NARROW}
-    #
-    def copy_ladders_y2x(self, sel_wide_in, sel_narrow_in, sel_wide_out, sel_narrow_out):
-
-        self.bnk.crt_x.ladder_x._set_wide(sel_wide_out, self.bnk.crt_x.ladder_y._get_wide(sel_wide_in))
-        self.bnk.crt_y.ladder_x._set_wide(sel_wide_out, self.bnk.crt_y.ladder_y._get_wide(sel_wide_in))
-
-        self.bnk.crt_x.ladder_x._set_narrow(sel_narrow_out, self.bnk.crt_x.ladder_y._get_narrow(sel_narrow_in))
-        self.bnk.crt_y.ladder_x._set_narrow(sel_narrow_out, self.bnk.crt_y.ladder_y._get_narrow(sel_narrow_in))
-
-    #
-    # copy from CRT_{X,Y}.LADDER_X.{WIDE,NARROW} to CRT_{Y,X}.LADDER_Y.{WIDE,NARROW}
-    #
-    def cross_ladders_x2y(self, sel_wide_in, sel_narrow_in, sel_wide_out, sel_narrow_out):
-
-        self.bnk.crt_x.ladder_y._set_wide(sel_wide_out, self.bnk.crt_y.ladder_x._get_wide(sel_wide_in))
-        self.bnk.crt_y.ladder_y._set_wide(sel_wide_out, self.bnk.crt_x.ladder_x._get_wide(sel_wide_in))
-        
-        self.bnk.crt_x.ladder_y._set_narrow(sel_narrow_out, self.bnk.crt_y.ladder_x._get_narrow(sel_narrow_in))
-        self.bnk.crt_y.ladder_y._set_narrow(sel_narrow_out, self.bnk.crt_x.ladder_x._get_narrow(sel_narrow_in))
-
-    #
-    # modular multiply sel_wide_in by sel_narrow_in
-    # stores intermediate result in WIDE.L and WIDE.H
-    # needs modulus WIDE.N and speed-up coefficients NARROW.N_COEFF to be filled
-    # places two copies of resulting quantity in sel_wide_out and sel_narrow_out
-    # sel_*_in and sel_*_out can overlap (overwriting of input operands is ok)
-    #
-    def modular_multiply(self, sel_wide_in, sel_narrow_in, sel_wide_out, sel_narrow_out, num_words, mode=(True, True), d=False):
-
-        xn       = self.bnk.crt_x.ladder_x._get_wide(ModExpNG_WideBankEnum.N)
-        yn       = self.bnk.crt_y.ladder_x._get_wide(ModExpNG_WideBankEnum.N)
-
-        xn_coeff = self.bnk.crt_x.ladder_x._get_narrow(ModExpNG_NarrowBankEnum.N_COEFF)
-        yn_coeff = self.bnk.crt_y.ladder_x._get_narrow(ModExpNG_NarrowBankEnum.N_COEFF)
-
-        xxa       = self.bnk.crt_x.ladder_x._get_wide(sel_wide_in)
-        xya       = self.bnk.crt_x.ladder_y._get_wide(sel_wide_in)
-
-        yxa       = self.bnk.crt_y.ladder_x._get_wide(sel_wide_in)
-        yya       = self.bnk.crt_y.ladder_y._get_wide(sel_wide_in)
-
-        xxb       = self.bnk.crt_x.ladder_x._get_narrow(sel_narrow_in)
-        xyb       = self.bnk.crt_x.ladder_y._get_narrow(sel_narrow_in)
-
-        yxb       = self.bnk.crt_y.ladder_x._get_narrow(sel_narrow_in)
-        yyb       = self.bnk.crt_y.ladder_y._get_narrow(sel_narrow_in)
-
-        if not mode[0]: xb = xxb
-        else:           xb = xyb
-
-        if not mode[1]: yb = yxb
-        else:           yb = yyb
-
-        xxp = self.wrk.multipurpose_multiply(xxa, xb, xn, xn_coeff, num_words, dump=d, dump_crt="X", dump_ladder="X")
-        xyp = self.wrk.multipurpose_multiply(xya, xb, xn, xn_coeff, num_words, dump=d, dump_crt="X", dump_ladder="Y")
-
-        yxp = self.wrk.multipurpose_multiply(yxa, yb, yn, yn_coeff, num_words, dump=d, dump_crt="Y", dump_ladder="X")
-        yyp = self.wrk.multipurpose_multiply(yya, yb, yn, yn_coeff, num_words, dump=d, dump_crt="Y", dump_ladder="Y")
-
-        self.bnk.crt_x.ladder_x._set_wide(sel_wide_out, xxp)
-        self.bnk.crt_x.ladder_y._set_wide(sel_wide_out, xyp)
-        self.bnk.crt_y.ladder_x._set_wide(sel_wide_out, yxp)
-        self.bnk.crt_y.ladder_y._set_wide(sel_wide_out, yyp)
-
-        self.bnk.crt_x.ladder_x._set_narrow(sel_narrow_out, xxp)
-        self.bnk.crt_x.ladder_y._set_narrow(sel_narrow_out, xyp)
-        self.bnk.crt_y.ladder_x._set_narrow(sel_narrow_out, yxp)
-        self.bnk.crt_y.ladder_y._set_narrow(sel_narrow_out, yyp)
-
-    #
-    # modular subtract values in sel_narrow_in (X-Y)
-    # stores two copies of the result in sel_*_out
-    #
-    def modular_subtract(self, sel_narrow_in, sel_narrow_out, sel_wide_out, num_words):
-
-        xa = self.bnk.crt_x.ladder_x._get_narrow(sel_narrow_in)
-        xb = self.bnk.crt_x.ladder_y._get_narrow(sel_narrow_in)
-        xn = self.bnk.crt_x.ladder_x._get_wide(ModExpNG_WideBankEnum.N)
-
-        ya = self.bnk.crt_y.ladder_x._get_narrow(sel_narrow_in)
-        yb = self.bnk.crt_y.ladder_y._get_narrow(sel_narrow_in)
-        yn = self.bnk.crt_y.ladder_x._get_wide(ModExpNG_WideBankEnum.N)
-
-        xd = self.wrk.serial_subtract_modular(xa, xb, xn, num_words)
-        yd = self.wrk.serial_subtract_modular(ya, yb, yn, num_words)
-
-        self.bnk.crt_x.ladder_x._set_narrow(sel_narrow_out, xd)
-        self.bnk.crt_y.ladder_x._set_narrow(sel_narrow_out, yd)
-
-        self.bnk.crt_x.ladder_x._set_wide(sel_wide_out, xd)
-        self.bnk.crt_y.ladder_x._set_wide(sel_wide_out, yd)
-    
-    #
-    # modular reduce sel_narrow_in
-    # stores two copies of the result in sel_*_out
-    #
-    def modular_reduce(self, sel_narrow_in, sel_wide_out, sel_narrow_out, num_words):
-
-        xn       = self.bnk.crt_x.ladder_x._get_wide(ModExpNG_WideBankEnum.N)
-        yn       = self.bnk.crt_y.ladder_x._get_wide(ModExpNG_WideBankEnum.N)
-
-        xn_coeff = self.bnk.crt_x.ladder_x._get_narrow(ModExpNG_NarrowBankEnum.N_COEFF)
-        yn_coeff = self.bnk.crt_y.ladder_x._get_narrow(ModExpNG_NarrowBankEnum.N_COEFF)
-
-        xb       = self.bnk.crt_x.ladder_x._get_narrow(sel_narrow_in)
-        yb       = self.bnk.crt_y.ladder_x._get_narrow(sel_narrow_in)
-
-        xp = self.wrk.multipurpose_multiply(None, xb, xn, xn_coeff, num_words, reduce_only=True)
-        yp = self.wrk.multipurpose_multiply(None, yb, yn, yn_coeff, num_words, reduce_only=True)
-
-        self.bnk.crt_x.ladder_x._set_wide(sel_wide_out, xp)
-        self.bnk.crt_x.ladder_y._set_wide(sel_wide_out, xp)
-        self.bnk.crt_y.ladder_x._set_wide(sel_wide_out, yp)
-        self.bnk.crt_y.ladder_y._set_wide(sel_wide_out, yp)
-
-        self.bnk.crt_x.ladder_x._set_narrow(sel_narrow_out, xp)
-        self.bnk.crt_x.ladder_y._set_narrow(sel_narrow_out, xp)
-        self.bnk.crt_y.ladder_x._set_narrow(sel_narrow_out, yp)
-        self.bnk.crt_y.ladder_y._set_narrow(sel_narrow_out, yp)
-
-    #
-    # propagate carries (convert to non-redundant representation) content in sel_narrow
-    # overwrites input value
-    #
-    def propagate_carries(self, sel_narrow, num_words):
-        self.wrk.convert_nonredundant(self.bnk.crt_x.ladder_x._get_narrow(sel_narrow), num_words)
-        self.wrk.convert_nonredundant(self.bnk.crt_x.ladder_y._get_narrow(sel_narrow), num_words)
-        self.wrk.convert_nonredundant(self.bnk.crt_y.ladder_x._get_narrow(sel_narrow), num_words)
-        self.wrk.convert_nonredundant(self.bnk.crt_y.ladder_y._get_narrow(sel_narrow), num_words)
-
-    #
-    # copy from CRT_{X,Y}.LADDER_{X,Y}.WIDE.{H,L} to CRT_{X,Y}.LADDER_{X,Y}.NARROW
-    #
-    def merge_lha(self, sel_narrow, num_words):
-        xx_lsb = self.bnk.crt_x.ladder_x._get_wide(ModExpNG_WideBankEnum.L)
-        xy_lsb = self.bnk.crt_x.ladder_y._get_wide(ModExpNG_WideBankEnum.L)
-        yx_lsb = self.bnk.crt_y.ladder_x._get_wide(ModExpNG_WideBankEnum.L)
-        yy_lsb = self.bnk.crt_y.ladder_y._get_wide(ModExpNG_WideBankEnum.L)
-
-        xx_msb = self.bnk.crt_x.ladder_x._get_wide(ModExpNG_WideBankEnum.H)
-        xy_msb = self.bnk.crt_x.ladder_y._get_wide(ModExpNG_WideBankEnum.H)
-        yx_msb = self.bnk.crt_y.ladder_x._get_wide(ModExpNG_WideBankEnum.H)
-        yy_msb = self.bnk.crt_y.ladder_y._get_wide(ModExpNG_WideBankEnum.H)
-
-        xx = xx_lsb.words + xx_msb.words
-        xy = xy_lsb.words + xy_msb.words
-        yx = yx_lsb.words + yx_msb.words
-        yy = yy_lsb.words + yy_msb.words
-
-        self.bnk.crt_x.ladder_x._set_narrow(sel_narrow, ModExpNG_Operand(None, 2*num_words, xx))
-        self.bnk.crt_x.ladder_y._set_narrow(sel_narrow, ModExpNG_Operand(None, 2*num_words, xy))
-        self.bnk.crt_y.ladder_x._set_narrow(sel_narrow, ModExpNG_Operand(None, 2*num_words, yx))
-        self.bnk.crt_y.ladder_y._set_narrow(sel_narrow, ModExpNG_Operand(None, 2*num_words, yy))
-
-    #
-    # multiply sel_wide_in by sel_narrow_in
-    # stores twice larger product in WIDE.L and WIDE.H
-    #
-    def regular_multiply(self, sel_wide_in, sel_narrow_in, num_words):
-
-        xn       = self.bnk.crt_x.ladder_x._get_wide(ModExpNG_WideBankEnum.N)
-        yn       = self.bnk.crt_y.ladder_x._get_wide(ModExpNG_WideBankEnum.N)
-
-        xn_coeff = self.bnk.crt_x.ladder_x._get_narrow(ModExpNG_NarrowBankEnum.N_COEFF)
-        yn_coeff = self.bnk.crt_y.ladder_x._get_narrow(ModExpNG_NarrowBankEnum.N_COEFF)
-
-        xxa       = self.bnk.crt_x.ladder_x._get_wide(sel_wide_in)
-        xya       = self.bnk.crt_x.ladder_y._get_wide(sel_wide_in)
-
-        yxa       = self.bnk.crt_y.ladder_x._get_wide(sel_wide_in)
-        yya       = self.bnk.crt_y.ladder_y._get_wide(sel_wide_in)
-
-        xb       = self.bnk.crt_x.ladder_x._get_narrow(sel_narrow_in)
-        yb       = self.bnk.crt_y.ladder_x._get_narrow(sel_narrow_in)
-
-        xxp = self.wrk.multipurpose_multiply(xxa, xb, None, None, num_words, multiply_only=True)
-        xyp = self.wrk.multipurpose_multiply(xya, xb, None, None, num_words, multiply_only=True)
-
-        yxp = self.wrk.multipurpose_multiply(yxa, yb, None, None, num_words, multiply_only=True)
-        yyp = self.wrk.multipurpose_multiply(yya, yb, None, None, num_words, multiply_only=True)
-
-        xxp_lsb = xxp.lower_half()
-        xxp_msb = xxp.upper_half()
-
-        xyp_lsb = xyp.lower_half()
-        xyp_msb = xyp.upper_half()
-
-        yxp_lsb = yxp.lower_half()
-        yxp_msb = yxp.upper_half()
-
-        yyp_lsb = yyp.lower_half()
-        yyp_msb = yyp.upper_half()
-
-        self.bnk.crt_x.ladder_x._set_wide(ModExpNG_WideBankEnum.L, xxp_lsb)
-        self.bnk.crt_x.ladder_y._set_wide(ModExpNG_WideBankEnum.L, xyp_lsb)
-        self.bnk.crt_y.ladder_x._set_wide(ModExpNG_WideBankEnum.L, yxp_lsb)
-        self.bnk.crt_y.ladder_y._set_wide(ModExpNG_WideBankEnum.L, yyp_lsb)
-
-        self.bnk.crt_x.ladder_x._set_wide(ModExpNG_WideBankEnum.H, xxp_msb)
-        self.bnk.crt_x.ladder_y._set_wide(ModExpNG_WideBankEnum.H, xyp_msb)
-        self.bnk.crt_y.ladder_x._set_wide(ModExpNG_WideBankEnum.H, yxp_msb)
-        self.bnk.crt_y.ladder_y._set_wide(ModExpNG_WideBankEnum.H, yyp_msb)
-
-    #
-    # adds sel_narrow_a_in to sel_narrow_b_in
-    # stores result in sel_narrow_out
-    #
-    def regular_add(self, sel_narrow_a_in, sel_narrow_b_in, sel_narrow_out, num_words):
-        xxa = self.bnk.crt_x.ladder_x._get_narrow(sel_narrow_a_in)
-        xya = self.bnk.crt_x.ladder_y._get_narrow(sel_narrow_a_in)
-        yxa = self.bnk.crt_y.ladder_x._get_narrow(sel_narrow_a_in)
-        yya = self.bnk.crt_y.ladder_y._get_narrow(sel_narrow_a_in)
-
-        xxb = self.bnk.crt_x.ladder_x._get_narrow(sel_narrow_b_in)
-        xyb = self.bnk.crt_x.ladder_y._get_narrow(sel_narrow_b_in)
-        yxb = self.bnk.crt_y.ladder_x._get_narrow(sel_narrow_b_in)
-        yyb = self.bnk.crt_y.ladder_y._get_narrow(sel_narrow_b_in)
-
-        xxc = self.wrk.serial_add_uneven(xxa, xxb, num_words)
-        xyc = self.wrk.serial_add_uneven(xya, xyb, num_words)
-        yxc = self.wrk.serial_add_uneven(yxa, yxb, num_words)
-        yyc = self.wrk.serial_add_uneven(yya, yyb, num_words)
-
-        self.bnk.crt_x.ladder_x._set_narrow(sel_narrow_out, xxc)
-        self.bnk.crt_x.ladder_y._set_narrow(sel_narrow_out, xyc)
-        self.bnk.crt_y.ladder_x._set_narrow(sel_narrow_out, yxc)
-        self.bnk.crt_y.ladder_y._set_narrow(sel_narrow_out, yyc)
-
-    #
-    # dump working variables before ladder step
-    #
-    def dump_before_step_using_crt(self, pq, m):
-        print("num_words = %d" % pq)
-        print("\rladder_mode_x = %d" % m[0])
-        print("\rladder_mode_y = %d" % m[1])
-        self.bnk.crt_x.ladder_x._get_narrow(N.C).format_verilog_concat("X_X")
-        self.bnk.crt_x.ladder_y._get_narrow(N.C).format_verilog_concat("X_Y")
-        self.bnk.crt_y.ladder_x._get_narrow(N.C).format_verilog_concat("Y_X")
-        self.bnk.crt_y.ladder_y._get_narrow(N.C).format_verilog_concat("Y_Y")
-        self.bnk.crt_x.ladder_x._get_wide(W.N).format_verilog_concat("X_N")
-        self.bnk.crt_x.ladder_x._get_wide(W.N).format_verilog_concat("Y_N")
-        self.bnk.crt_x.ladder_x._get_narrow(N.N_COEFF).format_verilog_concat("X_N_COEFF")
-        self.bnk.crt_x.ladder_x._get_narrow(N.N_COEFF).format_verilog_concat("Y_N_COEFF")
-
-    #
-    # dump working variables after ladder step
-    #
-    def dump_after_step_using_crt(self):
-        self.bnk.crt_x.ladder_x._get_narrow(N.C).format_verilog_concat("X_X")
-        self.bnk.crt_x.ladder_y._get_narrow(N.C).format_verilog_concat("X_Y")
-        self.bnk.crt_y.ladder_x._get_narrow(N.C).format_verilog_concat("Y_X")
-        self.bnk.crt_y.ladder_y._get_narrow(N.C).format_verilog_concat("Y_Y")
-
-    #
-    # this deliberately converts narrow operand into redundant representation
-    #
-    def _force_overflow(self, bank_crt, sel_narrow):
-
-        # original words
-        T = bank_crt.ladder_x._get_narrow(sel_narrow).words
-
-        # loop through upper N-1 words
-        for i in range(1, len(T)):
-
-            # get msbs of the previous word
-            upper_bits = T[i-1] & _CARRY_MASK
-
-            # if the previous msbs are empty, force lsbs of the current word
-            # into them and then wipe the current lsbs
-            if upper_bits == 0:
-                lower_bits = T[i] & (_CARRY_MASK >> _WORD_WIDTH)
-                T[i] ^= lower_bits
-                T[i-1] |= (lower_bits << _WORD_WIDTH)
-
-        # overwrite original words
-        bank_crt.ladder_x._set_narrow(sel_narrow, ModExpNG_Operand(None, len(T), T))
-
-        print("Forced overflow.")
-
-#
-# read content of core's output bank and compare it against known good values
-#
-def compare_signature():
-
-    c  = core
-    s  = s_known
-    xm = xm_known
-    ym = ym_known
-
-    core_s  = c.out.get_value(O.S)
-    core_xm = c.out.get_value(O.XM)
-    core_ym = c.out.get_value(O.YM)
-
-    if core_s.number()  != s:  print("ERROR: core_s != s!")
-    else:                      print("s is OK")
-
-    if core_xm.number() != xm: print("ERROR: core_xm != xm!")
-    else:                      print("x_mutated is OK")
-
-    if core_ym.number() != ym: print("ERROR: core_ym != ym!")
-    else:                      print("y_mutated is OK")
-
-#
-# get current ladder mode based on two exponents' bits
-#
-def get_ladder_mode_using_crt(v, bit):
-
-    bit_value_p = (v.dp.number() & (1 << bit)) >> bit
-    bit_value_q = (v.dq.number() & (1 << bit)) >> bit
-
-    bit_value_p = bit_value_p > 0
-    bit_value_q = bit_value_q > 0
-
-    return (bit_value_p, bit_value_q)
-
-#
-# get current ladder mode based on private exponent's bit
-#
-def get_ladder_mode_without_crt(v, bit):
-
-    bit_value_d = (v.d.number() & (1 << bit)) >> bit
-
-    bit_value_d = bit_value_d > 0
-
-    return (not bit_value_d, bit_value_d)
-
-#
-# print current exponentiation progress
-#
-def print_ladder_progress(current, total):
-
-    # this will always print "100.0%" at the very last iteration, since we're
-    # counting bits from msb to lsb and the very last index is zero, which
-    # is congruent to 0 mod DUMP_PROGRESS_FACTOR
-    if (current % DUMP_PROGRESS_FACTOR) == 0:
-        pct = float((_WORD_WIDTH * total - current) / (_WORD_WIDTH * total)) * 100.0
-        print("\rdone: %5.1f%%" % pct, end='')
-
-    # move to next line after the very last iteration
-    if current == 0: print("")
-
-#
-# try to exponentiate using the quad-multiplier (dual-core, dual-ladder) scheme
-#
-def sign_using_crt():
-
-    c  = core
-    v  = vector
-    n  = n_num_words
-    pq = pq_num_words
-
-    ff = (False, False)
-                                                                   #
-                                                                   # A / B => different content in banks (A in WIDE, B in NARROW)
-                                                                   # [XY]Z => different content in ladders (XZ in X, YZ in Y)
-                                                                   # ..    => temporarily half-filled bank (omitted to save space)
-                                                                   # *     => "crossed" content (X.Y == Y.X and Y.Y == X.X)
-                                                                   #
-                                                                   # +------------------------+-------+------------------+---------+-----------+
-                                                                   # |  A                     |  B    |  C               |  D      |  E        |
-                                                                   # +------------------------+-------+------------------+---------+-----------+
-    c.set_wide_from_input   (c.bnk.crt_x, W.N,       I.N)          # |  ?                     |  ?    |  ?               |  ?      | ?         |
-    c.set_wide_from_input   (c.bnk.crt_y, W.N,       I.N)          # |  ?                     |  ?    |  ?               |  ?      | ?         |
-    c.set_wide_from_input   (c.bnk.crt_x, W.A,       I.X)          # |  ..                    |  ?    |  ?               |  ?      | ?         |
-    c.set_wide_from_input   (c.bnk.crt_y, W.A,       I.Y)          # | [XY] / ?               |  ?    |  ?               |  ?      | ?         |
-    c.set_wide_from_input   (c.bnk.crt_x, W.E,       I.M)          # | [XY] / ?               |  ?    |  ?               |  ?      | .. / ?    |
-    c.set_wide_from_input   (c.bnk.crt_y, W.E,       I.M)          # | [XY] / ?               |  ?    |  ?               |  ?      | M  / ?    |
-                                                                   # +------------------------+-------+------------------+---------+-----------+
-    c.set_narrow_from_input (c.bnk.crt_x, N.N_COEFF, I.N_COEFF)    # | [XY] / ?               |  ?    |  ?               |  ?      | M  / ?    |
-    c.set_narrow_from_input (c.bnk.crt_y, N.N_COEFF, I.N_COEFF)    # | [XY] / ?               |  ?    |  ?               |  ?      | M  / ?    |
-    c.set_narrow_from_input (c.bnk.crt_x, N.A,       I.N_FACTOR)   # | [XY] / ..              |  ?    |  ?               |  ?      | M  / ?    |
-    c.set_narrow_from_input (c.bnk.crt_y, N.A,       I.N_FACTOR)   # | [XY] / N_FACTOR        |  ?    |  ?               |  ?      | M  / ?    |
-    c.set_narrow_from_input (c.bnk.crt_x, N.E,       I.M)          # | [XY] / N_FACTOR        |  ?    |  ?               |  ?      | M  / ..   |
-    c.set_narrow_from_input (c.bnk.crt_y, N.E,       I.M)          # | [XY] / N_FACTOR        |  ?    |  ?               |  ?      | M         |
-                                                                   # +------------------------+-------+------------------+---------+-----------+
-    c.modular_multiply(W.A, N.A, W.B, N.B, n)                      # | [XY] / N_FACTOR        | [XY]F |  ?               |  ?      | M         | [XY]F = [XY] * N_FACTOR
-    c.modular_multiply(W.B, N.B, W.C, N.C, n, mode=ff)             # | [XY] / N_FACTOR        | [XY]F | [XY]YM           |  ?      | M         | [XY]MF = [XY]F * [XY]F
-    c.modular_multiply(W.C, N.I, W.D, N.D, n)                      # | [XY] / N_FACTOR        | [XY]F | [XY]YM           | [XY]M   | M         | [XY]M = [XY]MF * 1
-                                                                   # +------------------------+-------+------------------+---------+-----------+
-    c.propagate_carries(N.D, n_num_words)                          # | [XY] / N_FACTOR        | [XY]F | [XY]YM           | [XY]M   | M         |
-                                                                   # +------------------------+-------+------------------+---------+-----------+
-    c.set_output_from_narrow(O.XM, c.bnk.crt_x, N.D)               # | [XY] / N_FACTOR        | [XY]F | [XY]YM           | [XY]M   | M         |
-    c.set_output_from_narrow(O.YM, c.bnk.crt_y, N.D)               # | [XY] / N_FACTOR        | [XY]F | [XY]YM           | [XY]M   | M         |
-                                                                   # +------------------------+-------+------------------+---------+-----------+
-    c.modular_multiply(W.E, N.B, W.C, N.C, n)                      # | [XY] / N_FACTOR        | [XY]F | [XY]MB           | [XY]M   | M         | [XY]MB = M * [XY]F
-                                                                   # +------------------------+-------+------------------+---------+-----------+
-    c.propagate_carries(N.C, n_num_words)                          # | [XY] / N_FACTOR        | [XY]F | [XY]MB           | [XY]M   | M         |
-                                                                   # +------------------------+-------+------------------+---------+-----------+
-    c.copy_crt_y2x(W.C, N.C)                                       # | [XY] / N_FACTOR        | [XY]F |  YMB             | [XY]M   | M         |
-                                                                   # +------------------------+-------+------------------+---------+-----------+
-    c.set_wide_from_input  (c.bnk.crt_x, W.N,       I.P)           # | [XY] / N_FACTOR        | [XY]F |  YMB             | [XY]M   | M         |
-    c.set_wide_from_input  (c.bnk.crt_y, W.N,       I.Q)           # | [XY] / N_FACTOR        | [XY]F |  YMB             | [XY]M   | M         |
-    c.set_wide_from_input  (c.bnk.crt_x, W.A,       I.P_FACTOR)    # | ...         / N_FACTOR | [XY]F |  YMB             | [XY]M   | M         |
-    c.set_wide_from_input  (c.bnk.crt_y, W.A,       I.Q_FACTOR)    # | [PQ]_FACTOR / N_FACTOR | [XY]F |  YMB             | [XY]M   | M         |
-    c.set_wide_from_input  (c.bnk.crt_x, W.E,       I.QINV)        # | [PQ]_FACTOR / N_FACTOR | [XY]F |  YMB             | [XY]M   | ..        |
-    c.set_wide_from_input  (c.bnk.crt_x, W.E,       I.QINV)        # | [PQ]_FACTOR / N_FACTOR | [XY]F |  YMB             | [XY]M   | QINV / M  |
-                                                                   # +------------------------+-------+------------------+---------+-----------+
-    c.set_narrow_from_input(c.bnk.crt_x, N.N_COEFF, I.P_COEFF)     # | [PQ]_FACTOR / N_FACTOR | [XY]F |  YMB             | [XY]M   | QINV / M  |
-    c.set_narrow_from_input(c.bnk.crt_y, N.N_COEFF, I.Q_COEFF)     # | [PQ]_FACTOR / N_FACTOR | [XY]F |  YMB             | [XY]M   | QINV / M  |
-    c.set_narrow_from_input(c.bnk.crt_x, N.A,       I.P_FACTOR)    # | [PQ]_FACTOR / ...      | [XY]F |  YMB             | [XY]M   | QINV / M  |
-    c.set_narrow_from_input(c.bnk.crt_y, N.A,       I.Q_FACTOR)    # | [PQ]_FACTOR            | [XY]F |  YMB             | [XY]M   | QINV / M  |
-    c.set_narrow_from_input(c.bnk.crt_x, N.E,       I.QINV)        # | [PQ]_FACTOR            | [XY]F |  YMB             | [XY]M   | QINV / .. |
-    c.set_narrow_from_input(c.bnk.crt_x, N.E,       I.QINV)        # | [PQ]_FACTOR            | [XY]F |  YMB             | [XY]M   | QINV      |
-                                                                   # +------------------------+-------+------------------+---------+-----------+
-    c.modular_reduce(N.C, W.D, N.D, pq)                            # | [PQ]_FACTOR            | [XY]F |  YMB             | [PQ]MBZ | QINV      | [PQ]MBZ = YMB mod [PQ]
-    c.modular_multiply(W.D, N.A, W.C, N.C, pq)                     # | [PQ]_FACTOR            | [XY]F | [PQ]MB           | [PQ]MBZ | QINV      | [PQ]MB = [PQ]MBZ * [PQ]_FACTOR
-    c.modular_multiply(W.C, N.A, W.D, N.D, pq)                     # | [PQ]_FACTOR            | [XY]F | [PQ]MB           | [PQ]MBF | QINV      | [PQ]MBF = [PQ]MB * [PQ]_FACTOR
-    c.modular_multiply(W.A, N.I, W.C, N.C, pq)                     # | [PQ]_FACTOR            | [XY]F | [PQ]IF           | [PQ]MBF | QINV      | [PQ]IF = 1 * [PQ]_FACTOR
-                                                                   # +------------------------+-------+------------------+---------+-----------+
-    c.copy_ladders_x2y(W.D, N.D, W.C, N.C)                         # | [PQ]_FACTOR            | [XY]F | [PQ]IF / [PQ]MBF | [PQ]MBF | QINV      |
-                                                                   # +------------------------+-------+------------------+---------+-----------+
-    ###########################                                    # |                        |       |                  |         |           |
-    # Begin Montgomery Ladder #                                    # |                        |       |                  |         |           |
-    ###########################                                    # |                        |       |                  |         |           |
-                                                                   # |                        |       |                  |         |           |
-    for bit in range(_WORD_WIDTH * pq - 1, -1, -1):                # |                        |       |                  |         |           |
-                                                                   # |                        |       |                  |         |           |
-        m  = get_ladder_mode_using_crt(v, bit)                     # |                        |       |                  |         |           |
-        dbg = bit == DUMP_LADDER_INDEX                             # |                        |       |                  |         |           |
-                                                                   # |                        |       |                  |         |           |
-        if dbg:                                                    # |                        |       |                  |         |           |
-            if FORCE_OVERFLOW: c._force_overflow(c.bnk.crt_x, N.C) # |                        |       |                  |         |           |
-            if DUMP_VECTORS: c.dump_before_step_using_crt(pq, m)   # |                        |       |                  |         |           |
-                                                                   # +------------------------+-------+------------------+---------+-----------+
-        c.modular_multiply(W.C, N.C, W.C, N.C, pq, mode=m, d=dbg)  # | [PQ]_FACTOR            | [XY]F | [PQ]SBF          | [PQ]MBF | QINV      | <LADDER>
-                                                                   # +------------------------+-------+------------------+---------+-----------+
-        if dbg and DUMP_VECTORS: c.dump_after_step_using_crt()     # |                        |       |                  |         |           |
-        print_ladder_progress(bit, pq)                             # |                        |       |                  |         |           |
-                                                                   # |                        |       |                  |         |           |
-    #########################                                      # |                        |       |                  |         |           |
-    # End Montgomery Ladder #                                      # |                        |       |                  |         |           |
-    #########################                                      # |                        |       |                  |         |           |
-                                                                   # +------------------------+-------+------------------+---------+-----------+
-    c.modular_multiply(W.C, N.I, W.D, N.D, pq)                     # | [PQ]_FACTOR            | [XY]F | [PQ]SBF          | [PQ]SB  | QINV      | [PQ]SB = [PQ]SBF * 1
-                                                                   # +------------------------+-------+------------------+---------+-----------+
-    c.propagate_carries(N.D, pq)                                   # | [PQ]_FACTOR            | [XY]F | [PQ]SBF          | [PQ]SB  | QINV      |
-                                                                   # +------------------------+-------+------------------+---------+-----------+
-    c.cross_ladders_x2y(W.D, N.D, W.D, N.D)                        # | [PQ]_FACTOR            | [XY]F | [PQ]SBF          | [PQ]SB* | QINV      |
-                                                                   # +------------------------+-------+------------------+---------+-----------+
-    c.modular_subtract(N.D, N.C, W.C, pq)                          # | [PQ]_FACTOR            | [XY]F |  RSB             | [PQ]SB* | QINV      | RSB = PSB - QSB
-                                                                   # +------------------------+-------+------------------+---------+-----------+
-    c.modular_multiply(W.C, N.E, W.C, N.C, pq)                     # | [PQ]_FACTOR            | [XY]F |  RSBIZ           | [PQ]SB* | QINV      | RSBIZ = RSB * QINV
-    c.modular_multiply(W.C, N.A, W.C, N.C, pq)                     # | [PQ]_FACTOR            | [XY]F |  RSBI            | [PQ]SB* | QINV      | RSBI = RSBIZ * P_FACTOR
-                                                                   # +------------------------+-------+------------------+---------+-----------+
-    c.set_wide_from_input  (c.bnk.crt_x, W.E, I.Q)                 # | [PQ]_FACTOR / N_FACTOR | [XY]F |  RSBI            | [PQ]SB* | ..        |
-    c.set_wide_from_input  (c.bnk.crt_x, W.E, I.Q)                 # | [PQ]_FACTOR / N_FACTOR | [XY]F |  RSBI            | [PQ]SB* | Q / QINV  |
-                                                                   # +------------------------+-------+------------------+---------+-----------+
-    c.set_narrow_from_input(c.bnk.crt_x, N.E, I.Q)                 # | [PQ]_FACTOR            | [XY]F |  RSBI            | [PQ]SB* | Q / ..    |
-    c.set_narrow_from_input(c.bnk.crt_x, N.E, I.Q)                 # | [PQ]_FACTOR            | [XY]F |  RSBI            | [PQ]SB* | Q         |
-                                                                   # +------------------------+-------+------------------+---------+-----------+
-    c.regular_multiply(W.E, N.C, pq)                               # | [PQ]_FACTOR            | [XY]F |  RSBI            | [PQ]SB* | Q         | = RSBI * Q
-                                                                   # +------------------------+-------+------------------+---------+-----------+
-    c.merge_lha(N.A, pq)                                           # | [PQ]_FACTOR / QRSBI    | [XY]F |  RSBI            | [PQ]SB* | Q         |
-                                                                   # +------------------------+-------+------------------+---------+-----------+
-    c.propagate_carries(N.A, n)                                    # | [PQ]_FACTOR / QRSBI    | [XY]F |  RSBI            | [PQ]SB* | Q         |
-                                                                   # +------------------------+-------+------------------+---------+-----------+
-    c.copy_crt_y2x(W.D, N.D)                                       # | [PQ]_FACTOR / QRSBI    | [XY]F |  RSBI            |  QSB*   | Q         |
-                                                                   # +------------------------+-------+------------------+---------+-----------+
-    c.regular_add(N.D, N.A, N.C, pq)                               # | [PQ]_FACTOR / QRSBI    | [XY]F |  SB              |  QSB*   | Q         | SB = QSB + RSBI
-                                                                   # +------------------------+-------+------------------+---------+-----------+
-    c.set_wide_from_input  (c.bnk.crt_x, W.N, I.N)                 # |                        |       |                  |         |           |
-    c.set_wide_from_input  (c.bnk.crt_y, W.N, I.N)                 # |                        |       |                  |         |           |
-                                                                   # +------------------------+-------+------------------+---------+-----------+
-    c.set_narrow_from_input(c.bnk.crt_x, N.N_COEFF, I.N_COEFF)     # |                        |       |                  |         |           |
-    c.set_narrow_from_input(c.bnk.crt_y, N.N_COEFF, I.N_COEFF)     # |                        |       |                  |         |           |
-                                                                   # +------------------------+-------+------------------+---------+-----------+
-    c.modular_multiply(W.B, N.C, W.A, N.A, n, ff)                  # |  S                     |       |                  |         |           | S = XF * SB
-                                                                   # +------------------------+-------+------------------+---------+-----------+
-    c.propagate_carries(N.A, n)                                    # |  S                     |       |                  |         |           |
-                                                                   # +------------------------+-------+------------------+---------+-----------+
-    c.set_output_from_narrow(O.S, c.bnk.crt_x, N.A)                # |  S                     |       |                  |         |           |
-                                                                   # +------------------------+-------+------------------+---------+-----------+
-
-#
-# try to exponentiate using only half of the quad-multiplier (one dual-ladder core)
-#
-def sign_without_crt():
-
-    c  = core
-    v  = vector
-    n  = n_num_words
-
-    ff = (False, False)
-
-    c.set_wide_from_input   (c.bnk.crt_x, W.N,       I.N)
-    c.set_wide_from_input   (c.bnk.crt_y, W.N,       I.N)
-    c.set_wide_from_input   (c.bnk.crt_x, W.A,       I.X)
-    c.set_wide_from_input   (c.bnk.crt_y, W.A,       I.Y)
-    c.set_wide_from_input   (c.bnk.crt_x, W.E,       I.M)
-    c.set_wide_from_input   (c.bnk.crt_y, W.E,       I.M)
-
-    c.set_narrow_from_input (c.bnk.crt_x, N.N_COEFF, I.N_COEFF)
-    c.set_narrow_from_input (c.bnk.crt_y, N.N_COEFF, I.N_COEFF)
-    c.set_narrow_from_input (c.bnk.crt_x, N.A,       I.N_FACTOR)
-    c.set_narrow_from_input (c.bnk.crt_y, N.A,       I.N_FACTOR)
-    c.set_narrow_from_input (c.bnk.crt_x, N.E,       I.M)
-    c.set_narrow_from_input (c.bnk.crt_y, N.E,       I.M)
-
-    c.modular_multiply(W.A, N.A, W.B, N.B, n)           # [XY]F = [XY] * N_FACTOR
-    c.modular_multiply(W.B, N.B, W.C, N.C, n, mode=ff)  # [XY]MF = [XY]F * [XY]F
-    c.modular_multiply(W.C, N.I, W.D, N.D, n)           # [XY]M = [XY]MF * 1
-
-    c.propagate_carries(N.D, n)
-
-    c.set_output_from_narrow(O.XM, c.bnk.crt_x, N.D)
-    c.set_output_from_narrow(O.YM, c.bnk.crt_y, N.D)
-
-    c.modular_multiply(W.E, N.B, W.C, N.C, n)   # [XY]MB = M * [XY]F
-
-    XF = c.bnk.crt_x.ladder_x._get_narrow(N.B)
-
-    c.set_wide_from_input(c.bnk.crt_x, W.A, I.N_FACTOR)
-    c.set_wide_from_input(c.bnk.crt_y, W.A, I.N_FACTOR)
-
-    c.modular_multiply(W.C, N.A, W.D, N.D, n)   # MBF = MB * N_FACTOR
-    c.modular_multiply(W.A, N.I, W.C, N.C, n)   # IF = 1 * N_FACTOR    
-    
-    c.copy_ladders_x2y(W.D, N.D, W.C, N.C)
-
-    ###########################
-    # Begin Montgomery Ladder #
-    ###########################
-
-    for bit in range(_WORD_WIDTH * n - 1, -1, -1):
-
-        m  = get_ladder_mode_without_crt(v, bit)
-        dbg = bit == DUMP_LADDER_INDEX
-
-        if dbg:
-            if FORCE_OVERFLOW: c._force_overflow(c.bnk.crt_x, N.C)
-            if DUMP_VECTORS: c.dump_before_step_without_crt(n, m)
-
-        c.modular_multiply(W.C, N.C, W.C, N.C, n, mode=m, d=dbg)
-
-        if dbg and DUMP_VECTORS: c.dump_after_step_without_crt()
-        print_ladder_progress(bit, n)
-            
-    #########################
-    # End Montgomery Ladder #
-    #########################
-
-    c.cross_ladders_x2y(W.B, N.B, W.B, N.B)
-
-    c.modular_multiply(W.C, N.I, W.D, N.D, n)           # SB = SBF * 1    
-    c.modular_multiply(W.B, N.D, W.A, N.A, n, mode=ff)  # S = XF * SB
-
-    c.copy_ladders_y2x(W.A, N.A, W.B, N.B)
-    
-    c.propagate_carries(N.B, n)
-    
-    c.set_output_from_narrow(O.S, c.bnk.crt_y, N.B)
-
-
-#
-# main()
-#
-if __name__ == "__main__":
-
-    # handy shortcuts
-    W = ModExpNG_WideBankEnum
-    N = ModExpNG_NarrowBankEnum
-    I = ModExpNG_CoreInputEnum
-    O = ModExpNG_CoreOutputEnum
-
-    # set helper quantity
-    # instantiate core
-    # load test vector
-    # transfer numbers from vector to core
-    # set numbers of words
-    # obtain known good reference value with built-in math
-    # mutate blinding quantities with built-in math
-
-    i = ModExpNG_Operand(1, KEY_LENGTH)
-
-    core   = ModExpNG_Core(i)
-    vector = ModExpNG_TestVector()
-
-    core.inp.set_value(I.M,        vector.m)
-
-    core.inp.set_value(I.N,        vector.n)
-    core.inp.set_value(I.P,        vector.p)
-    core.inp.set_value(I.Q,        vector.q)
-
-    core.inp.set_value(I.N_COEFF,  vector.n_coeff)
-    core.inp.set_value(I.P_COEFF,  vector.p_coeff)
-    core.inp.set_value(I.Q_COEFF,  vector.q_coeff)
-
-    core.inp.set_value(I.N_FACTOR, vector.n_factor)
-    core.inp.set_value(I.P_FACTOR, vector.p_factor)
-    core.inp.set_value(I.Q_FACTOR, vector.q_factor)
-
-    core.inp.set_value(I.X,        vector.x)
-    core.inp.set_value(I.Y,        vector.y)
-
-    core.inp.set_value(I.QINV,     vector.qinv)
-
-    n_num_words  = KEY_LENGTH  // _WORD_WIDTH
-    pq_num_words = n_num_words // 2
-
-    s_known = pow(vector.m.number(), vector.d.number(), vector.n.number())
-
-    xm_known = pow(vector.x.number(), 2, vector.n.number())
-    ym_known = pow(vector.y.number(), 2, vector.n.number())
-
-    # sign using CRT and check
-    print("Signing using CRT...")
-    sign_using_crt()
-    compare_signature()
-
-    # sign without CRT and check
-    print("Signing without CRT...")
-    sign_without_crt()
-    compare_signature()
-
-
-#
-# End-of-File
-#
diff --git a/vector/.gitignore b/vector/.gitignore
deleted file mode 100644
index f9daf64..0000000
--- a/vector/.gitignore
+++ /dev/null
@@ -1,3 +0,0 @@
-/__pycache__/
-/*_randomized.key
-/*_randomized.py
diff --git a/vector/README.md b/vector/README.md
deleted file mode 100644
index 3bd1853..0000000
--- a/vector/README.md
+++ /dev/null
@@ -1,10 +0,0 @@
-ModExpNG
-========
-
-Ranzomized test vector generation scripts for ModExpNG core model.
-
- * `vector_regenerate.py` generates a new random RSA keypair using OpenSSL. Each invocation overwrites the keypair, the old one is not retained. **Never use the generated keypair for anything outside of this model!**
- * `vector_format.py` processes the previously generated keypair. It first generates a "random" demo message to be signed and a "random" blinding factor, signs the message and checks the signature using Python's built-in math. If everything goes well, it writes the formatted test vector to a file.
- * `vector_util.py` is a helper module.
- 
-To obtain a test vector, optionally edit _KEY_LENGTH_ in `vector_regenerate.py` to set desired key length, then run the script to generate randomized key file. Then optionally edit _KEY_LENGTH_ in `vector_format.py` to match key length and change _RND_SEED_MESSAGE_ to get a different demo message and _RND_SEED_BLINDING_ to get a different blinding factor. Finally run the script to obtain randomized test vector module.
diff --git a/vector/vector_format.py b/vector/vector_format.py
deleted file mode 100644
index a3e7e81..0000000
--- a/vector/vector_format.py
+++ /dev/null
@@ -1,67 +0,0 @@
-#!/usr/bin/python3
-#
-#
-# Formats a new test vector for ModExpNG core model.
-#
-#
-# Copyright (c) 2019, NORDUnet A/S
-# All rights reserved.
-#
-# Redistribution and use in source and binary forms, with or without
-# modification, are permitted provided that the following conditions are
-# met:
-# - Redistributions of source code must retain the above copyright notice,
-#   this list of conditions and the following disclaimer.
-#
-# - Redistributions in binary form must reproduce the above copyright
-#   notice, this list of conditions and the following disclaimer in the
-#   documentation and/or other materials provided with the distribution.
-#
-# - Neither the name of the NORDUnet nor the names of its contributors may
-#   be used to endorse or promote products derived from this software
-#   without specific prior written permission.
-#
-# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
-# IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
-# TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
-# PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-# HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
-# TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
-# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
-# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-#
-
-import sys
-import vector_util
-
-SCRIPT_USAGE = "USAGE: vector_format.py [openssl_binary]"
-
-KEY_LENGTH = 1024
-
-RNG_SEED_MESSAGE = 1
-RNG_SEED_BLINDING = 2
-
-
-if __name__ == "__main__":
-
-    # ModInv fails otherwise...
-    sys.setrecursionlimit(int(1.5 * KEY_LENGTH))
-
-    OPENSSL_BINARY = vector_util.openssl_binary(SCRIPT_USAGE)
-
-    if len(OPENSSL_BINARY) > 0:
-
-        MESSAGE  = vector_util.random_message(RNG_SEED_MESSAGE, KEY_LENGTH)
-        BLINDING = vector_util.random_blinding(RNG_SEED_BLINDING, KEY_LENGTH)
-        VECTOR   = vector_util.load_vector(OPENSSL_BINARY, KEY_LENGTH)
-
-        vector_ok = VECTOR.selfcheck(MESSAGE, BLINDING)
-        if vector_ok:
-            vector_util.save_vector(VECTOR)
-            print("Test vector formatted.")
-        else:
-            print("Failed to format test vector.")
-
diff --git a/vector/vector_regenerate.py b/vector/vector_regenerate.py
deleted file mode 100644
index 34c6384..0000000
--- a/vector/vector_regenerate.py
+++ /dev/null
@@ -1,48 +0,0 @@
-#!/usr/bin/python3
-#
-#
-# Generates a new ranzomized test vector for ModExpNG core model.
-#
-#
-# Copyright (c) 2019, NORDUnet A/S
-# All rights reserved.
-#
-# Redistribution and use in source and binary forms, with or without
-# modification, are permitted provided that the following conditions are
-# met:
-# - Redistributions of source code must retain the above copyright notice,
-#   this list of conditions and the following disclaimer.
-#
-# - Redistributions in binary form must reproduce the above copyright
-#   notice, this list of conditions and the following disclaimer in the
-#   documentation and/or other materials provided with the distribution.
-#
-# - Neither the name of the NORDUnet nor the names of its contributors may
-#   be used to endorse or promote products derived from this software
-#   without specific prior written permission.
-#
-# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
-# IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
-# TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
-# PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-# HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
-# TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
-# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
-# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-#
-
-import vector_util
-
-SCRIPT_USAGE = "USAGE: vector_regenerate.py [openssl_binary]"
-
-KEY_LENGTH = 1024
-
-if __name__ == "__main__":
-
-    OPENSSL_BINARY = vector_util.openssl_binary(SCRIPT_USAGE)
-
-    if len(OPENSSL_BINARY) > 0:
-        vector_util.openssl_genrsa(OPENSSL_BINARY, KEY_LENGTH)
diff --git a/vector/vector_util.py b/vector/vector_util.py
deleted file mode 100644
index 37e4fb6..0000000
--- a/vector/vector_util.py
+++ /dev/null
@@ -1,319 +0,0 @@
-#!/usr/bin/python3
-#
-#
-# Helper routines for ModExpNG randomized test vector generator.
-#
-#
-# Copyright (c) 2019, NORDUnet A/S
-# All rights reserved.
-#
-# Redistribution and use in source and binary forms, with or without
-# modification, are permitted provided that the following conditions are
-# met:
-# - Redistributions of source code must retain the above copyright notice,
-#   this list of conditions and the following disclaimer.
-#
-# - Redistributions in binary form must reproduce the above copyright
-#   notice, this list of conditions and the following disclaimer in the
-#   documentation and/or other materials provided with the distribution.
-#
-# - Neither the name of the NORDUnet nor the names of its contributors may
-#   be used to endorse or promote products derived from this software
-#   without specific prior written permission.
-#
-# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
-# IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
-# TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
-# PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-# HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
-# TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
-# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
-# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-#
-
-
-import sys
-import random
-import subprocess
-from enum import Enum, auto
-
-
-class VectorPiece(Enum):
-    VectorPieceOther = auto()
-    VectorPieceN     = auto()
-    VectorPieceD     = auto()
-    VectorPieceP     = auto()
-    VectorPieceQ     = auto()
-    VectorPieceDP    = auto()
-    VectorPieceDQ    = auto()
-    VectorPieceQINV  = auto()
-
-
-class Vector:
-
-    # public exponent
-    _f4 = 0x10001
-
-    def __init__(self, length):
-        self._bits = length
-        self._n    = ""
-        self._d    = ""
-        self._p    = ""
-        self._q    = ""
-        self._dp   = ""
-        self._dq   = ""
-        self._qinv = ""
-
-    def _add_piece(self, type, value):
-        value = value.replace(":",   "")
-        value = value.replace("\r",  "")
-        value = value.replace("\n",  "")
-        value = value.replace(" ",   "")
-
-        if   type == VectorPiece.VectorPieceN:    self._n    += value
-        elif type == VectorPiece.VectorPieceD:    self._d    += value
-        elif type == VectorPiece.VectorPieceP:    self._p    += value
-        elif type == VectorPiece.VectorPieceQ:    self._q    += value
-        elif type == VectorPiece.VectorPieceDP:   self._dp   += value
-        elif type == VectorPiece.VectorPieceDQ:   self._dq   += value
-        elif type == VectorPiece.VectorPieceQINV: self._qinv += value
-        else: raise Exception("Invalid vector piece type!")
-
-    def _calc_mont_factor(self, length, modulus):
-        return pow(2, 2*length, modulus)
-
-    def _calc_mod_coeff(self, length, modulus):
-
-        pwr = pow(2, length)
-        pwr_mask = pwr - 1
-
-        r = 1
-        b = 1
-
-        nn = ((modulus ^ pwr_mask) + 1) % pwr
-
-        for i in range(1, length):
-
-            b = (b << 1) % pwr
-            t = (r * nn) % pwr
-
-            if t & (1 << i): r += b
-
-        return r
-
-    def _calc_blind_y(self, x, modulus):
-        x_inv = self._modinv(x, modulus)
-        return pow(x_inv, self._f4, modulus)
-
-    def _egcd(self, a, b):
-        if a == 0:
-            return (b, 0, 1)
-        else:
-            g, y, x = self._egcd(b % a, a)
-        return (g, x - (b // a) * y, y)
-
-    def _modinv(self, a, m):
-        g, x, y = self._egcd(a, m)
-        if g != 1:
-            raise Exception("_modinv() failed!")
-        else:
-            return x % m
-
-    def selfcheck(self, message, blinding):
-
-        self.m    = message             # message (padded)
-        self.n    = int(self._n,    16) # modulus
-        self.d    = int(self._d,    16) # private key
-        self.p    = int(self._p,    16) # part of modulus
-        self.q    = int(self._q,    16) # part of modulus
-        self.dp   = int(self._dp,   16) # smaller exponent
-        self.dq   = int(self._dq,   16) # smaller exponent
-        self.qinv = int(self._qinv, 16) # helper coefficient
-
-        self.x    = blinding
-        self.y    = self._calc_blind_y(self.x, self.n)
-
-        # check modulus
-        if self.n == 0:
-            print("ERROR: n == 0")
-            return False
-
-        if self.n != self.p * self.q:
-            print("ERROR: n != (p * q)")
-            return False
-
-        # check smaller exponents
-        if self.dp != (self.d % (self.p-1)):
-            print("ERROR: dp != (d % (p-1))")
-            return False
-
-        if self.dq != (self.d % (self.q-1)):
-            print("ERROR: dq != (d % (q-1))")
-            return False
-
-        # sign to obtain known good value
-        s_reference = pow(message, self.d, self.n)
-
-        # blind message
-        message_blinded = (message * self.y) % self.n
-
-        # sign blinded message
-        s_blinded = pow(message_blinded, self.d, self.n)
-
-        # unblind signature
-        s_unblinded = (s_blinded * self.x) % self.n
-
-        # check, that x and y actually work
-        if s_unblinded != s_reference:
-            print("ERROR: s_unblinded != s_reference!")
-            return False
-
-        # try to do crt with the blinded message
-        sp_blinded = pow(message_blinded, self.dp, self.p)
-        sq_blinded = pow(message_blinded, self.dq, self.q)
-
-        # recover full blinded signature
-        sr_blinded = sp_blinded - sq_blinded
-        if sr_blinded < 0: sr_blinded += self.p
-
-        sr_qinv_blinded = (sr_blinded * self.qinv) % self.p
-
-        s_crt_blinded = sq_blinded + self.q * sr_qinv_blinded
-
-        # unblind crt signature
-        s_crt_unblinded = (s_crt_blinded * self.x) % self.n
-
-        if s_crt_unblinded != s_reference:
-            print("ERROR: s_crt_unblinded != s_reference!")
-            return False
-
-        self.n_factor = self._calc_mont_factor(self._bits      + 16, self.n)
-        self.p_factor = self._calc_mont_factor(self._bits // 2 + 16, self.p)
-        self.q_factor = self._calc_mont_factor(self._bits // 2 + 16, self.q)
-
-        self.n_coeff = self._calc_mod_coeff(self._bits      + 16, self.n)
-        self.p_coeff = self._calc_mod_coeff(self._bits // 2 + 16, self.p)
-        self.q_coeff = self._calc_mod_coeff(self._bits // 2 + 16, self.q)
-
-        print("Test vector checked.")
-
-        return True
-
-
-def openssl_binary(usage):
-
-    # nothing so far
-    openssl = ""
-
-    # user didn't overide anything
-    if len(sys.argv) == 1:
-        openssl = "openssl"
-        print("Using system OpenSSL library.")
-
-    # user requested some specific binary
-    elif len(sys.argv) == 2:
-        openssl = sys.argv[1]
-        print("Using OpenSSL binary '" + openssl + "'...")
-
-    # didn't understand command line
-    else:
-        print(usage)
-
-    # return path to selected binary (if any)
-    return openssl
-
-
-def openssl_genrsa(binary, length):
-
-    filename = str(length) + "_randomized.key"
-    subprocess.call([binary, "genrsa", "-out", filename, str(length)])
-
-
-def random_message(seed, length):
-
-    message = 0
-    num_bytes = length // 8 - 1
-
-    random.seed(seed)
-
-    for i in range(num_bytes):
-        message <<= 8
-        message += random.getrandbits(8)
-
-    return message
-
-
-def random_blinding(seed, length):
-
-    blinding = 0
-    num_bytes = length // 8 - 1
-
-    random.seed(seed)
-
-    for i in range(num_bytes):
-        blinding <<= 8
-        blinding += random.getrandbits(8)
-
-    return blinding
-
-
-def load_vector(binary, length):
-
-    vector = Vector(length)
-    piece_type = VectorPiece.VectorPieceOther
-
-    filename = str(length) + "_randomized.key"
-    openssl_command = [binary, "rsa", "-in", filename, "-noout", "-text"]
-    openssl_stdout = subprocess.check_output(openssl_command).decode("utf-8").splitlines()
-
-    for line in openssl_stdout:
-        if   line.startswith("RSA Private-Key:"): piece_type = VectorPiece.VectorPieceOther
-        elif line.startswith("modulus:"):         piece_type = VectorPiece.VectorPieceN
-        elif line.startswith("publicExponent:"):  piece_type = VectorPiece.VectorPieceOther
-        elif line.startswith("privateExponent:"): piece_type = VectorPiece.VectorPieceD
-        elif line.startswith("prime1:"):          piece_type = VectorPiece.VectorPieceP
-        elif line.startswith("prime2:"):          piece_type = VectorPiece.VectorPieceQ
-        elif line.startswith("exponent1:"):       piece_type = VectorPiece.VectorPieceDP
-        elif line.startswith("exponent2:"):       piece_type = VectorPiece.VectorPieceDQ
-        elif line.startswith("coefficient:"):     piece_type = VectorPiece.VectorPieceQINV
-        else: vector._add_piece(piece_type, line)
-
-    return vector
-
-
-def save_vector(vector):
-
-    filename = "vector_" + str(vector._bits) + "_randomized.py"
-    print("Writing to '%s'..." % filename)
-
-    f = open(filename, 'w')
-
-    f.write("# Generated automatically, do not edit.\n\n")
-
-    f.write("class Vector:\n")
-    f.write("    m        = 0x%x\n" % vector.m)
-    f.write("    n        = 0x%x\n" % vector.n)
-    f.write("    d        = 0x%x\n" % vector.d)
-    f.write("    p        = 0x%x\n" % vector.p)
-    f.write("    q        = 0x%x\n" % vector.q)
-    f.write("    dp       = 0x%x\n" % vector.dp)
-    f.write("    dq       = 0x%x\n" % vector.dq)
-    f.write("    qinv     = 0x%x\n" % vector.qinv)
-    f.write("    n_factor = 0x%x\n" % vector.n_factor)
-    f.write("    p_factor = 0x%x\n" % vector.p_factor)
-    f.write("    q_factor = 0x%x\n" % vector.q_factor)
-    f.write("    n_coeff  = 0x%x\n" % vector.n_coeff)
-    f.write("    p_coeff  = 0x%x\n" % vector.p_coeff)
-    f.write("    q_coeff  = 0x%x\n" % vector.q_coeff)
-    f.write("    x        = 0x%x\n" % vector.x)
-    f.write("    y        = 0x%x\n" % vector.y)
-
-    f.close()
-
-
-#
-# End of file
-#



More information about the Commits mailing list